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Synopsis

A fiber bundle model (FBM) is a theoretical model used in material science to study

the breakdown properties of materials. This model has been seen to be very useful in

practical applications such as in studying fractures, earthquakes, traffic systems etc. It

consists of a set of massless elastic fibers placed parallel to each other and clamped from

both ends. At the lower end a force is applied to elongate the bundle. Every fiber has a

distinct breaking threshold drawn from a random distribution. This is the only source of

disorder in the system. Ideally, a fiber elongates following the Hooke’s Law and breaks

when the load per fiber acting on it reaches its breaking threshold. When a fiber breaks,

the load carried by it is redistributed to the rest of the intact fibers in the bundle. Due

to this redistribution the intact fibers experience an enhanced stress. This may cause

more fibers to break and the released load again gets redistributed. This process goes on

till the bundle reaches a stable state. A stable state is defined as a state when all intact

fibers have their breaking thresholds below the external load per fiber or when the entire

bundle has failed. In the present thesis, we have considered the Equal Load Sharing

(ELS) version of the fiber bundle where the load released by a broken fiber is distributed

equally to all the intact ones. Depending on the extent of disorderedness in the system

the fiber bundle can either be brittle or quasi-brittle. If the weakest fiber failure causes
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Synopsis

complete breakdown of the bundle, then the bundle is defined as brittle; otherwise it is

defined as quasi-brittle. We study the transition of the bundle between these states by

tuning a parameter that controls the amount of disorderedness in the bundle.

1. Relaxation time of an ELS FBM

When an external load per fiber σ is applied to a bundle then all the fibers having their

breaking thresholds below it break. The load released by the broken fibers is redistributed

among the intact fibers. This is defined as one relaxation time step. The remaining intact

fibers will experience an enhanced stress causing more fibers to break and eventually

redistribute it among the intact fibers. This process repeats itself in a series of successive

time steps T till a stable state is reached. Thus, the relaxation time is not real time but a

real positive integer that gives us the number of times the redistribution of load occurs in

the bundle for the same externally applied load till a stable state has been reached. In

the precritical regime the average relaxation time against σ is seen to increase and reach

a finite but large peak at σ ≈ 1/4 with the height increasing with bundle size. In the

postcritical regime, the relaxation time decreases with increase in σ. In the vicinity of

the critical load σc, the relaxation time plotted against the deviation |σc − σ| follows a

power-law form both in the precritical and post critical regime.

2. Highly Disordered ELS FBM

Next, we have analyzed the breakdown properties of the model where the breaking

thresholds of the fibers are power law distributed within the limits 10−β to 10β with β as

a parameter. We have shown that the critical load of the bundle σc(β) = 10β/(2β e ln10)

for β > βu = 1/(2 ln10). Below βu the bundle is brittle which implies that if a load

is applied to break even the weakest fiber in the bundle, it fails completely. This is

a direct consequence of the extent of disorder in the material which comes from the

randomness of the breaking thresholds. When β is very small all the fibers have their
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Synopsis

breaking thresholds near unity and even the smallest fiber failure causes the breakdown

of an entire bundle. As β is increased the width of the disorder increases and the bundle

becomes quasi-brittle. The distribution of the avalanche sizes follows a power law and

the exponent undergoes a crossover from 3/2 to 5/2 for lower and higher values of β

respectively. We have also shown that the critical load approaches its asymptotic value

following σc(β,N) = σc(β)(N) +AN1/ν(β) where the finite size correction exponent

ν(β) is a beta dependent quantity. It is first observed to increase sharply with β, reaches

a maximum, then decreases, and finally converges to a value ≈ 3/2 which is true for a

FBM having breaking thresholds drawn from uniform distribution between [0, 1].

3. Brittle to quasi-brittle transition in a FBM with

non-linear fibers

Next, we have studied a FBM where the individual fibers are assumed to follow a non-

linear stress-strain curve. We have mainly considered the following four different forms

of non-linearity: s = G(x) = eαx, 1 + xα, xα, and xeαx where α is a tunable parameter.

Analytical studies, supported by extensive numerical calculations of this model, exhibit a

brittle to quasi-brittle phase transition at a critical value of αc only in the first two cases.

For the case G(x) = eαx, this transition is characterized by a weak power law modulated

logarithmic (brittle) and logarithmic (quasi-brittle) dependence of the maximal relaxation

time on the two sides of the critical point. A study of the average avalanche size indicates

a peak at the critical point αc. Moreover, the critical load σc(α) for the global failure of

the bundle depends explicitly on α in all cases.
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Synopsis

4. Brittle to quasi-brittle transition in a compound

FBM

Finally, we have studied the transition in a compound FBM consisting of two different

kinds of fibrous materials, having distinct difference in their breaking strengths. We have

considered a random fiber FBM with a bimodal distribution of the breaking strengths

of the individual fibers. The bimodal distribution is assumed to be consisting of two

symmetrically placed rectangular probability distributions of strengths p and 1 − p,

each of width d, and separated by a gap 2s. Different properties of the transition have

been studied varying these three parameters. Our study exhibits a brittle to quasi-brittle

transition at the critical width dc(s, p) = p(1/2− s)/(1 + p) confirmed by our numerical

results.
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CHAPTER 1

Introduction

Even though present day science and engineering have allowed us to construct remarkable

structures like the huge skyscrapers and long suspension bridges, we have many examples

of the finest quality and most impressive architectural constructions around the world

that were built thousands of years ago, but are still standing successfully at this age. In

fact, the ancient architects not only designed these famous structures very cleverly, but

also selected and used the materials of construction in such a way so as to avoid the

future fractures and failures i.e., to make them long lasting. The Leaning Tower of Pisa,

the Colosseum in Rome, the Great Wall of China are few examples of such structures

which exist till now in the present day. There are also certain bridges, like the Pons

Fabricius built in 62 B.C in Rome, that are still used for their intended purposes. These

examples indicate that the knowledge of erosion, fracture and breakdown of materials

have been prevalent ever since people started doing constructions. It was known that

materials are prone to failure when they are subjected to stress. Fracture and breakdown

of materials can cause damage of property and loss of lives. Quite naturally, even today

houses and buildings are constructed with the aim that they will be able to withstand

different weather conditions. For example, since Japan is prone to a lot of earthquakes,

the buildings there are constructed in a way such that they are resilient to earthquakes.

The study of the mechanics of fracture in materials has been considered to be very

important. Historically, the modern day research related to this branch of science
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Chapter 1

Figure 1.1: Around 90 out of 2700 ships manufactured by a U.S. Liberty Ship Building
Program during World War II underwent serious fractures with some of them resulting
in breaking completely into two halves. This picture is taken from the website [1].

started mainly due to the destruction of the Liberty cargo ships which were sent from

the United States of America to Britain during World War II to support them in the

battle against Germany [2, 3]. Out of around 2700 ships, nearly 90 ships were either

completely destroyed or sustained serious fractures. It was widely believed that the

damages occurred due to the low quality of welding, poor quality of steel used and huge

stress accumulations at the deck square hatch corners. Cracks generated due to stress

concentration kept on growing larger and consequently became unstable since there were

no rivets to hinder their growth and this resulted in the ships breaking into halves (Fig.

1.1). This incident led the material scientists to start extensive research in the field of

fracture mechanics, mostly from the engineering point of view, with emphasis on how to

build and design durable structures that are able to withstand crack growths when they

are kept under stress.

It was revealed later that there is a need to understand fracture in materials from the

physics point of view as well. This is because no material medium is perfectly pure. In

fact truly any real material has a large number of randomly distributed micro-size defects

(or impurities). Therefore, any sample of real material is actually a good example of a
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disordered system. Fractures or crack propagation in materials usually nucleate around

the disorders present in them and eventually affect their breakdown properties.

More lately, disordered systems were being studied in Statistical Physics in the

topic of Percolation Phenomena and the electrical conductivity of impure materials

using Quantum mechanics under the localization phenomena. It had been realized

that in general, materials undergo breakdown processes both under externally applied

mechanical stress as well as under the application of high voltages. In both cases, the

presence of disorder plays an important role in the determination of the breakdown

point as well as behaviour of the materials in the close vicinity of the breakdown point.

Different samples of the same material, having same dimensions, have different strengths

that fluctuate around an average value and this demands a statistical treatment. It has been

well established that fracture always nucleates from the weak sections of the material.

A simple experiment pertaining to mechanical breakdown can be illustrated by pulling

a rectangular piece of paper at its two ends with a single hole in it till it tears apart

completely. The largest tear in it always originates from the position of the hole in

the paper since that is the weakest part. The propagation of a crack in the case of a

distribution of holes has been studied experimentally and analytically in Ref. [4].

The complex phenomena of breakdown in respect to earthquakes, which is known

to leave a lot of destruction and loss of lives in its wake, have also been seen to follow

certain empirical laws. The Gutenberg Richter Law states that the number of earthquakes

with energy E decays with E following a power law; it is proportional to E−(1+B) where

B is a suitable exponent [5, 6]. The Omori Law states that the rate of the number of

aftershocks after the mainshock also decays as a power law. These laws were estimated

after considering data for a very large number of events. Thus it has become evident

that there is a serious need to understand the process of fracture and breakdown using

a probabilistic description within the framework of Statistical Physics. Using the tools

provided in this branch of study one may be able to predict the occurrence of imminent

failure.
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Chapter 1 1.1. Leonardo DaVinci Experiment

There exist other types of breakdown of physical systems as well like the electric

breakdown caused by high voltages. A most common example of this in nature is the

lightning. During a thunderstorm, the thunderclouds have a build up of high concen-

trations of negative charge at its base which induces the ground below it to form a

region of positive charge. This leads to a potential difference and a voltage is developed

in the gap between the cloud and the ground. At a particular voltage strength the air

between the cloud and ground becomes electrically conducting which leads to a burst of

electric current flashing along the conductive pathway. These types of breakdown can be

modeled to study electrical breakdown and is described in details in Sec. 1.4.

In this thesis, we will present some of our studies on the breakdown properties of

materials taken in the form of a bundle of fibers. Presently, it has become apparent

that the breakdown point of a bundle of fibers can be looked upon as a critical point

that captures certain features of the well known phenomena of phase transition in the

disciplines of condensed matter and statistical physics.

1.1 Leonardo DaVinci Experiment

The experiment by Leonardo DaVinci [7, 8] is referred as the first experiment for

determining the strength of materials. This experiment measures the tensile strength of

wires of different lengths. An empty bucket was attached to a wire of a specific length

and diameter at one end and the other end was clamped to a fixed support (Fig. 1.2). A

container filled with sand was suspended next to the wire with a hole in it such that the

sand inside fell into the empty bucket at a certain rate. The wire broke when it could not

support the weight of the bucket anymore and dropped in a hole that was customized

according to the bucket’s shape and was placed right under it to maintain the stability of

the bucket after falling down. This experiment was repeated using various lengths of

wires and it was concluded that longer wires are indeed weaker than shorter ones. This

result was explained later by the argument that the material properties of a wire is not
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Chapter 1 1.2. Griffith’s Energy Balance Concept

Figure 1.2: Experimental setup for measuring the strength of wires by Leonardo DaVinci
[8].

homogeneous along it’s length. In general, any material is truly inhomogeneous and

has defects of many different sizes. The strength (or weakness) of a material sample

is determined by the size of the largest defect; larger the defect, weaker is the sample.

Therefore, the probability that a sample of wire would have a larger defect increases with

the length of the wire. This implies that longer wire samples are weaker than shorter

wires as had been observed in the DaVinci experiment.

1.2 Griffith’s Energy Balance Concept

The relation between the strength of a material and the length of a crack was first studied

by Griffith quantitatively using the concepts of thermodynamics [9]. He considered a

plate of thickness B subjected to a load σ at its two ends normal to the crack length

(Fig. 1.3(a)). A sharp crack of length 2a was introduced near the center of the plate.

Introduction of a crack in the system reduces the mechanical energy which is composed

of the elastic strain energy and the external work done to the system. This change in

the energy ∆UM due to introduction of the crack can be calculated in terms of external

stress σ, plate size B, crack length a and elastic modulus E of the material:

∆UM(a) = −πσ2a2B/E. (1.1)
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Chapter 1 1.2. Griffith’s Energy Balance Concept

(a) (b)

Figure 1.3: Schematic diagrams of (a) a plate of width B with a crack of length 2a
placed inside it and subjected to a uniform stress σ at both ends, and (b) the changes
in mechanical energy ∆UM , surface energy ∆US and the total energy ∆UT against the
crack length a. The maxima of ∆UT occurs at the critical crack length ac.

Introduction or propagation of a crack gives rise to two new free surfaces. Each new

free surface is associated with a positive surface energy. Let γ represent the surface

energy per unit area of the fracture surface. Then, the change in surface energy per unit

area due to crack propagation is given by

∆US(a) = 4aBγ. (1.2)

Thus, the total change in energy ∆UT (a) comprises of two components given by the

mechanical energy change ∆UM(a) and the surface energy change ∆US(a) as

∆UT (a) = ∆UM(a) + ∆US(a) = −πσ2a2B/E + 4aBγ. (1.3)

A schematic diagram of the plots for ∆UM(a), ∆US(a) and ∆UT (a) are shown in Fig.

1.3(b). The mechanical energy decreases because the growth of a crack releases elastic

strain energy. The surface energy is an increasing function of crack length a as it is the

energy required to overcome the intermolecular forces to create the surfaces of the crack.

Since the mechanical energy decreases with increase in crack lengths and the surface
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Chapter 1 1.3. Types of fracture

energy increases, the former favours elongation of the crack while the latter prevents it

from happening. This is called the Griffith energy-balance concept which is given by

dUT (a)/da = 0. Therefore by applying this condition to Eq. (1.3) we get

σc = (2Eγ/πac)
1/2 (1.4)

where σc is the critical value of the load applied and ac is the critical crack length. This

means that for a specific value of crack length ac, all values of σ < σc will not affect its

length. But for σ > σc the crack starts propagating catastrophically leading to fracture

of the plate [10].

1.3 Types of fracture

In real world, we rarely come across materials that are completely perfect and are

inherently disordered to some extent. This extent of disorderedness in materials plays

a very important role in determining their breakdown properties. In fact, sometimes

it is introduced artificially in materials to change their properties to a desired one.

Depending on the level of disorderedness, the breakdown of materials under stress is

mainly considered to be of two types namely, brittle and ductile.

Brittle fractures in materials occur abruptly without any kind of plastic deformation.

It behaves elastically till it can endure a maximum load after which it fails catastrophically

as shown in Fig. 1.4(a). This kind of fracture can be found in glass and some ceramic

materials. Since these types of fractures occur very swiftly, they are not accompanied by

any warning signals before complete failure of the system.

On the other hand, ductile materials exhibit considerable plastic deformation (called

necking) before their catastrophic failure [11]. This type of fracture is mostly observed

in metals under tensile stress and typically, the fracture proceeds through different stages

as shown in Fig. 1.4(b). At the maximum load, voids begin to form in the necking region

that coalesce gradually leading to the formation of larger cracks and finally break apart

forming a "cup and cone" structure.
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Chapter 1 1.3. Types of fracture

(a) (b) (c)

Figure 1.4: Different types of fracture (a) brittle, (b) ductile and (c) quasibrittle. This
picture is taken from Ref. [11].

There exists another intermediate category of fracture called the quasi-brittle type

fracture which can be found in many polycrystalline ceramics and cementitious materials.

This type of fracture is associated with some measurable deformation before complete

breakdown. The non-linear part of the load-displacement curve after the maximum load

is called the softening branch as shown in the Fig. 1.4(c). It is characterized by the

growth of existing defects in the material along with new defects being formed under

constant loading. The crack front in this type of fracture is encompassed by a large

fracture-process zone where progressive distributed cracking takes place.

Since the last two types of breakdowns are long drawn-out processes, it allows us to

measure some precursors that help us in understanding whether the propagating crack is a

stable or an unstable one leading to complete breakdown. Some studies have shown that

these precursors can also be used to predict complete failure of the material [12]. Many

natural disasters like land slide, mine collapse, earthquake end up causing immense loss

of lives in its wake. Thus, research in this field to understand the underlying failure

processes is extremely important to minimize these losses. This can lead us to correct

detection of such warnings of imminent danger during a failure. Due to these concerns,

scientific efforts have been made in this area to examine the microscopic mechanism and

rupture process of disordered materials.
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Chapter 1 1.4. Electrical Breakdown

v
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Figure 1.5: Current - Voltage (i− v) characteristic curves for (a) Fuse model [13] and
(b) Dielectric breakdown model.

1.4 Electrical Breakdown

While the FBM is an example of mechanical breakdown that is the main topic of this

thesis and has been explained in great details in Sec. 1.5, there can be other types of

breakdown as well. One such breakdown is called the Electrical breakdown that can be

seen to occur in devices like electrical fuses etc. Another type of breakdown called the

dielectric breakdown is seen to occur in capacitors and more naturally in lightning as

mentioned before. These types of breakdowns are examples of disordered systems and

have been discussed in the following three subsections from the Statistical point of view

using theoretical models.

1.4.1 Fuse Network

An electrical component is said to be a ‘fuse’ if it acts like a linear resistor if the applied

voltage v across it is smaller than a threshold value vc but it burns out and converts

irreversibly to an insulator for v > vc. A schematic diagram for the I-V characteristics

for such a fuse has been shown in Fig. 1.5(a). A simple model of such a random electrical

network had been studied by [13]. This network consists of random mixtures of resistors

and fuses. How such a system undergoes a transition from a globally conducting phase

to an insulating phase when the externally applied voltage is increases systematically

has been studied in this model.
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On a square lattice of size L× L, each bond is occupied by a fuse with probability p,

or by an insulator with probability (1 − p). A cylindrical geometry has been used for

the system i.e., it is periodic along the horizontal direction but open along the vertical

direction across which the external voltage is applied. In the conducting state each bond

has unit resistance, whereas vc is also assumed to be unity for each bond as well. Starting

from a high value of p one first ensures that the system is in a globally conducting state,

i.e., there exists a spanning path of fuse bonds connecting the top and bottom boundaries.

The conducting backbone of the network is identified, which is the subset of fuse bonds

that conduct current. On this backbone the electrical potential at each node is estimated.

There exists a hottest bond across which the voltage drop is maximum. The value V

of the externally applied is then increased to Vin so that the voltage drop across the

hottest bond reaches vc and becomes sufficient to break it. Immediately there would be

redistribution of voltages in the system but the system may still be conducting. Again

the hottest bond in the system is identified and the external voltage is further increased

to a value V ′in which is then broken again. This alternate process of increasing the

external voltage and breaking the hottest bond is continued till the system ceases to have

a globally conducting path of fuse bonds for an external voltage Vfin. Values of both

Vin and Vfin are estimated scaled by the system size L. Numerical results in Ref. [13]

observed a power law divergence of Vfin against the deviation from the percolation

threshold Vfin ≈ (p− pc)−z with z = 0.48± 0.08.

This model is further generalized by making the breaking voltages (currents) of

different fuse bonds to be different [14]. Here all bonds of the lattice are fuse bonds

and the breaking voltage vci of a fuse bond i is assigned a random value drawing from a

uniform distribution p(vc) defined over the range 1− w/2 < vc < 1 + w/2 where the

width parameter of the distribution can be tuned in the range 0 ≤ w ≤ 2.

Let us first consider the limiting situation of w → 0 i.e., when the distribution p(vc)

is very sharp. Here, even the weakest fuse has a large breaking threshold 1− w/2 and

for its failure the externally applied load needs to be very high. Consequently when this
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Chapter 1 1.4. Electrical Breakdown

bond is broken, a voltage redistribution takes place resulting in a situation where the

voltage drops against a number of fuse bonds exceed their breaking thresholds. This

is because in the limit of w → 0, the breaking thresholds are very narrowly separated.

Consequently breaking of these bonds results further breaking of fuse bonds and this

cascading failure of fuse bonds eventually lead to the failure of the entire system. Such a

system is called a ‘brittle’ system. A system is called brittle in which the failure of the

weakest bond nucleates a crack that propagates across the entire system. On the other

hand, a system is called ductile (quasi-brittle) in which there is a large range over which

the individual bond breakings are driven by increases in the external potential. Kahng et

al [14] by probabilistic argument established the existence of a transition between the

brittle and ductile phases at a critical value of the system size dependent width parameter

wc(L) which approaches 2 as L→ 2.

1.4.2 A Highly Disordered Fuse Model

Here the two dimensional system is considered in the form of an oriented square lattice.

As before, each bond represents a fuse with unit resistance which can sustain a current

i upto a maximum value of ic. Therefore, i for i > ic, the the fuse burns and the bond

becomes an insulator with infinite resistance. The individual values for the breaking

currents in the range 10−β < ic < 10β have been drawn from a power law distribution

P (ic) ∼ i−1
c (see Fig. 1.6). This is done by drawing random numbersR from the uniform

distribution over the range −1 < R < 1 and defining ic = 10βR. It is assumed that the

externally applied load is raised slowly from zero so that only one fuse bond burns at a

time. The fuse bond having the maximal value max(i/ic) determines the next candidate

to be burnt. After the failure of every fuse, the values of the potential at all sites are

determined again [15].

One starts from a regular lattice of size L× L, where all bonds are fuse bonds with

different values of critical currents ic. Initially all bonds carry currents. Then current

carrying bonds are selected one by one determined by max(i/ic) and are burnt. The
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Figure 1.6: Plot of the normalized power law distribution functions P (ic) for the fuse
bond breaking currents against the breaking current ic have been shown using a double
logarithmic scale. The functional form is: P (ic) ∼ i−1

c and this function is defined
between ic = 10−β to 10β . The values of β = 1/2 (black), 1 (red) and 2 (blue) have been
used.

burnt bonds are necessarily on the current carrying backbone of the cluster of fuse bonds

spanning between top and bottom boundaries. There are no currents in all bonds of a

dangling branch and therefore these bonds are never burnt. Consequently, the intact fuse

bonds always form a single cluster until the entire system breaks and it ceases to carry

any current. At this point a connected cluster of burnt bonds appear spanning the system

in the horizontal direction.

Pictorially, every burnt bond is represented by the corresponding bond in the dual

lattice, and colored red. Here, we present three different pictures which are the snapshots

of burnt-intact bond configurations taken right after the global connectivity is lost. In

the first case the strength of the disorder is chosen to be weak, and the value of β is

tuned to be 0.01. Here the range of random values of ic is very narrow. When a fuse

bond is burnt, the nearby intact fuse bonds experience the maximal changes in their

individual currents and as the distance increases the effect of burning also gradually

fades away. This effect results, that for a narrow distribution of breaking currents, it is

very likely that the next fuse bond to be burnt is selected from the local neighborhood.

This is very much observed in Fig. 1.7 for β = 0.01 where a sequence of bonds are burnt

one after another making only a linear path without branches, spanning the system in
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(a)

(b)

(c)

Figure 1.7: Snapshots of fracture patterns with β = (a) 0.01, (b) 1.0 and (c) 2.0 right after
global connectivity of the current is lost in a highly disordered fuse model. The blue
colour represents an intact bond and the red colour indicates a burnt bond [15].

the horizontal direction. For the intermediate disorder with β = 1, the burnt bonds are

distributed all over the system. The fractured surface is more rough. Finally in the case

of high disorder with β = 2 the backbone is very rough.

1.4.3 Dielectric Breakdown

In the dielectric breakdown problem, the situation is the opposite. It starts with a random

mixture of conducting and insulating materials [16]. Again on a L×L square lattice, each
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Chapter 1 1.4. Electrical Breakdown

bond is labeled as a conductor with probability p and a dielectric with probability (1−p).

A dielectric bond can withstand a potential difference v across it upto a certain maximum

value vc and thereafter it burns out and becomes conducting (see Fig. 1.5(b)). It is

assumed that all dielectric bonds are identical and are characterized by the same value of

the breakdown voltage vc. An external voltage difference VB is applied between the top

and the bottom boundaries and its value is tuned and gradually increased. Different lattice

sites that are not connected to any conducting bonds are at different potentials in general.

On the other hand, all lattice sites which belong to a cluster of a conducting bonds are

at the same potential and its value differs from one cluster to the other. Depending

on the random configuration of conducting bonds there exists one dielectric bond in

the lattice which has the largest potential difference across it. The applied voltage VB

is gradually increased to a value so that the maximal potential difference across that

particular bond reaches vc. This bond burns immediately and become conducting. This

results a redistribution of electric potentials at the lattice sites in general, including the

sites of the conducting clusters. It may happen that due to redistribution, the potential

differences across some more dielectric bonds now exceed vc, therefore they would also

fail. This way a cascade of dielectric bond failures take place, that stops when no more

dielectric bond has potential difference larger than vc. At this point, VB is raised again

so that the next avalanche of bond failures is triggered. This procedure is continued

till a large cluster of conducting bonds appears that spans the system from the top to

the bottom. The specific value of VB at which the entire system becomes conducting

is referred as the Breakdown Voltage and the current flows from the top to the bottom

boundary through a spanning cluster of conducting bonds.

The precise value of the average breakdown voltage VB(p, L) depends on both the

density p of conducting bonds as well as the system size L. It has been observed the

average breakdown voltage vanishes as VB(p, L)/L ∼ (pc − p)t
′ where pc is the bond

percolation threshold of the lattice and t′ is referred as the breakdown exponent. It was

estimated that for the square lattice t′ ≈ 1.1 [17].
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Chapter 1 1.5. The Fiber Bundle Model

1.5 The Fiber Bundle Model

The Fiber Bundle Model (FBM) describes the breakdown phenomena of materials in

the form of a bunch of fibers in the disciplines of Material Science and Statistical

Physics [6, 18–20]. The fiber bundle model was first studied by F. T. Pierce [21] in the

year 1926 to study the strength of cotton fibers and yarns. Theories of statistics were used

to study different properties of this model by H. E. Daniels [22]. About 20 years ago,

this model again attracted the renewed attention of the community of statistical physics.

A large number of papers have been published on different aspects as well as variants

of this simple model that indeed exhibited very rich behaviour. There are different

variations of the FBM that are also simple in nature. While some of them are analytically

tractable, others require to be studied numerically. In fact, there are very extensive

computer simulation studies in the literature of analytically non-tractable variants of

the FBM to estimate their critical breakdown stresses and the associated exponents. In

related topics, numerical studies have also been proven to be very useful to understand

the failure mechanisms of real systems like fiber-reinforced composites [23–28], and

also earthquakes [5, 20, 29–31] as well as traffic systems [32, 33] etc.

A fiber bundle consists of a collection of massless elastic fibers that are placed

parallel to one another and are clamped at the two ends. For example, one can imagine

that the upper end of all the fibers are attached to a clamp which is rigidly fixed with the

ceiling. On the other hand the lower ends of the fibers are attached to a rigid horizontal

bar. The entire bundle of fibers is subjected to an external stress. For example, a weight is

suspended from the bar to provide the tunable stress. When a single fiber is subjected to

a tensile stress, it experiences a longitudinal strain governed by the Hooke’s Law. Under

this linear regime of stress-strain characteristic, the fiber gets continuously strained on

increasing stress but for only upto a certain maximum value of the stress. Beyond this

value it is not able to withstand any additional stress and at this point it breaks. The

minimum value of the external stress required to break the fiber is called the breaking

stress of the fiber.
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Figure 1.8: A schematic diagram of the fiber bundle model (FBM).

In FBM it is assumed that the precise values of the breaking stresses of individual

fibers are distinctly different. In other words, every fiber has a unique breaking threshold

that is different from the breaking thresholds of all other fibers. This implies that different

fibers can withstand different amounts of stress before they break off. To mimic the

disorder in real materials, the actual value of the breaking stress of each fiber is assigned

randomly, drawing from a fixed probability distribution and its value remains constant

through out the entire loading process.

The interaction among the fibers occur by a load redistribution process. The entire

breaking dynamics is conservative, implying that in any arbitrary intermediate stage the

total stress acting on the remaining intact fibers is equal to the external load applied

on the system. When a fiber fails, the load carried by it is redistributed to the rest of

the intact fibers in the bundle. It is assumed that if the clamps supporting the fibers

are truly rigid, then the load will be redistributed equally to all the remaining intact

fibers. On the other hand if the clamps are not rigid and can be deformed, then the

intact fibers closest to the broken ones will receive more load compared to those at far

away distances. After load redistribution, the intact fibers experience an enhanced stress

acting on them. This enhancement of load may lead to the failure of additional fibers

which can again eventually cause another set of fiber failures and this process continues

like an avalanche [18, 19]. The FBM is also used in material science for considering
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the failure of a system of pillars that are compressed longitudinally instead of being

stretched [34, 35]. A schematic diagram of the FBM is shown in Fig. 1.8.

There are various versions of the FBM depending on the redistribution process of

the released load. A very popular version is called the Equal Load Sharing (ELS) model

where the clamps are considered to be infinitely rigid. Here, the load released by a broken

fiber is equally redistributed to all remaining intact fibers in the bundle. Accordingly,

fibers at large as well as small distances from the broken fiber receive equal shares of the

released load. Clearly, this is a mean field model and in most cases its critical behaviour

is analytically solvable [12, 22, 36–39].

In contrast, there exists another popular version of the FBM, called the Local Load

Sharing (LLS) model where the clamps are not considered to be rigid [40–52]. In this

case, the released load is distributed only to those intact fibers that are positioned in the

vicinity of the broken fiber. A number of different prescriptions of load redistribution

have been studied in the literature. The most common and widely discussed one among

them is the case when the broken fiber transfers its load only to the nearest surviving

neighbours [41, 47]. Another form of redistribution of load is where the amount of

load received by a fiber decays as a power law when its distance from the broken fiber

increases [49, 50]. This implies that the fibers far away from the broken fiber receive a

very small fraction of the released load.

1.6 The Critical Stress

It is assumed that σ is the load per fiber which is applied to the bundle initially. The

critical load of the fiber bundle, denoted by σc, is the minimal value of the external load

per fiber such that a phase transition takes place between a phase (σ < σc) of local

failures to a phase (σ > σc) of global failure where the entire system breaks down. It

is now well known that the fiber bundle system exhibits various characteristics of the

equilibrium critical phenomena at and around this point [18, 19].
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Chapter 1 1.6. The Critical Stress

Let us first describe the fiber bundle model consisting of N fibers under the Equal

Load Sharing rule. The set {bi} of breaking thresholds of the fibers are drawn from a

uniform threshold distribution p(b) between [0, 1]. It’s cumulative probability is given by

P (x) =


x, if 0 ≤ x ≤ 1

0, if x > 1.

(1.5)

Let an amount of external load F = Nσ be applied to the bundle at the initial stage

when all N fibers are intact. This implies that each fiber is subjected to a load σ and

consequently all fibers having breaking thresholds below σ would break simultaneously.

On an average the number of such broken fibers is NP (σ). Each of these fibers releases

an amount of stress σ. Therefore, a total of σNP (σ) amount of stress is released which is

equally distributed among remaining N(1− P (σ)) intact fibers since load is considered

to be a conserved quantity in this model. Let the new stress per fiber experienced by the

intact fibers be denoted by xt after the t-th step. Since the total load remains constant, the

external applied load after the first step of redistribution is given by F = Nx1(1−P (σ)).

Using the same argument, at any instant of time during the loading process the total load

is given by the stress per fiber in successive time steps x1, x2, x3, ..... as,

F = Nx1[1− P (σ)] = Nx2[1− P (x1)] = Nx3[1− P (x2)]... (1.6)

When a stable state is reached, the amount of stress received by each intact fiber is no

longer sufficient to break even the weakest fiber of the remaining bundle. Therefore, on

average, (xt+1−xt) < 1/N . At this stage one writes the applied load F (x) as a function

of the stress x per intact fiber at the stable state [12, 19].

F (x) = Nx[1− P (x)]. (1.7)

In Eq. (1.7), the quantity within the brackets is a monotonically decreasing function

since the fraction of intact fibers would decrease with an increase in the value of x and x

is a monotonically increasing function. Therefore the function F (x), being the product
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Chapter 1 1.7. Avalanche dynamics

of an increasing and decreasing function, has a maximum and let that maximum occur at

x = xc. The criterion for the maximum dF/dx = 0 yields the following condition:

1− P (xc)− xcp(xc) = 0. (1.8)

For a bundle with a uniform distribution of breaking thresholds p(x) = 1, one obtains

xc = 1/2 and Fc = N/4. The total critical applied load Fc corresponds to the critical

initial load per fiber [19] for large N

σc = Fc/N = 1/4. (1.9)

1.7 Avalanche dynamics

There are two different ways of loading the bundle with an external stress. In one way, the

external load is increased in such a manner so that only one fiber breaks at a time. In the

second way of loading the bundle, the applied stress per fiber is increased at a constant

rate. In this process at every loading step multiple fibers can break simultaneously.

The limiting case of this loading process is the first one which is called the quasi-static

loading.

In both the processes when the extent of disorder is moderately high, the complete

failure of the bundle never occurs in only one shot. Instead, it exhibits a series of

bursts like activities, called “avalanches”. In general, when a group of fibers break

simultaneously, the net load released by them is redistributed among the remaining intact

fibers depending on the different load redistribution rules. This enhances the loads of

the intact fibers which may exceed their breaking threshold causing them to break. This

iterative process continues till a stable state is reached. In a stable state either all the

fibers are completely broken or the bundle is partly broken when the load per fiber is

smaller than the breaking thresholds of all the intact fibers. The entire activity in the

form of a sequence of steps, each step being associated with a number of fiber failures, is

defined as an avalanche which stops when a stable state is reached. The total number of
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fibers broken in the avalanche is called the size of the avalanche, which is a measure of

the strength of the avalanche. Then the external load is increased again to start the next

avalanche to break another set of fibers among the intact ones. This process continues

till the complete failure of the bundle takes place.

One typically calculates the avalanche size distribution of this breakdown process

which is estimated by the normalized frequency histogram of the avalanche sizes. It is

seen to decay as a power law with an exponent of 5/2 for the ELS case [41, 53]. It has

been seen that this exponent value changes to 3/2 when the avalanche size distribution

is measured near breakdown of the bundle [54]. The change in the exponent values is a

signature for complete breakdown and can be treated as a precursor of the failure. On

the contrary, the avalanche size distribution in the LLS version of the FBM has no such

power law [41].

1.8 Studies on transition from a brittle to a

quasi-brittle phase in FBM

Systems like the FBMs display non-trivial breakdown properties and are used in the

literature to understand its critical behaviour [6, 36, 55–57]. Here, the source of disorder

is introduced in the form of breaking threshold values that are drawn from some pre-fixed

random probability distribution. If the bundle has very little disorder in it then the fracture

usually tends to be of brittle type. In the following discussions, the process of breakdown

is modeled in the following way. An external load is applied to the bundle in such a way

that only the weakest fiber among them breaks. If this causes a devastating avalanche

of broken fibers leading to complete failure of the bundle, then it is described in the

literature as a brittle bundle. On the other hand, if the avalanche stops before reaching

complete failure with some fibers still intact in the stable state then it is described as a

quasi-brittle bundle which is caused due to disorder in the system. This implies that for

such a bundle more than one avalanche is required for complete failure. By altering the
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Figure 1.9: (a) Plot of the probability of brittle bundles Pb(δ,N) against tuning parameter
δ for N = 28(black), 210(red) and 216(blue) with N increasing from right to left. (b) Plot
of δc(N)− δc against N−η with η = 0.385 and δc = 0.165 [58].

extent of disorderedness in the system we can study the transition between these two

types of fractures that have been discussed extensively in the following chapters.

The transition from a brittle to quasi-brittle state of a fiber bundle has been studied

previously in certain models of the FBM in the literature. In a study done by Roy and

Ray [58], they consider a FBM following the ELS rule of load redistribution where each

fiber is assigned a random value of breaking threshold drawn from a uniform probability

distribution within limits {1/2− δ, 1/2 + δ} with δ as a tuning parameter that determines

the width of the uniform distribution. Thus, small values of δ means that the breaking

threshold values of individual fibers are similar to each other implying less disorder in

the system. On the other hand, a large value of δ leads to a wide variety of values for

the breaking thresholds leading to greater disorder in the system. It is observed that for

small values of δ the fiber bundle is mostly brittle and for large values of δ, the system is

mostly quasi-brittle. Thus, by tuning the value δ one can obtain a transition between the

brittle and the quasi-brittle phases of the bundle.

The critical width δ = δc is found to be 1/6 from analytical calculations. Therefore,

for δ < δc, the bundle is brittle, otherwise it is quasi-brittle. To estimate it numerically,

the probability Pb(δ,N) is calculated that a randomly selected sample out of a large

number of independent bundles is brittle. This quantity is ≈ 1 for very small values of δ

and decreases continuously for increasing values of δ (Fig. 1.9(a)). This indicates that
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Figure 1.10: Plot of the phase diagram for the fiber bundle with power-law distributed
values of Young’s modulus E and constant breaking thresholds where r is the ratio
Emin/Emax and a is the power-law exponent. The curve r(a) denotes the transition
points in the system [59].

the bundles are mostly brittle for a narrow distribution of breaking thresholds and mostly

quasi-brittle for a wider distribution. The decrease in Pb(δ,N) becomes sharper with

increase in bundle size N . The minimum value of δ at which Pb(δ,N) = 0 is denoted

by δc(N). The variation of δc(N) against N is plotted in Fig. 1.9(b) assuming that it

follows the relation: δc(N)− δc = AL−η; where A is a constant and η = 0.33± 0.02.

This process of finding the critical width has been explained in more details in Chapter 4

and Chapter 5.

In another study done by Karpas and Kun [59], a FBM is considered where the

source of disorderedness in the model comes from the individual fibers having random

values of Young’s modulus E while keeping the breaking thresholds constant. A power

law distribution is considered for the random values of Young’s modulus p(E) ∼ E−a

within limits Emin and Emax. Their ratio r = Emin/Emax is fixed and the exponent

a is tuned to study the transition from a brittle to a quasi-brittle phase. In this way,

they constructed a phase diagram in the r − a plane where the critical curve given by

rc(a) = (a− 1)1/(2−a) separates the brittle phase from the quasi-brittle phase as shown

in Fig. 1.10.
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1.9 Plan of the thesis

In the previous sections we briefly reviewed the literature of the FBM and discussed

some variations of the model. In this thesis we have considered only the equal load

sharing rule of the FBM. In Chapter 2, the relaxation time of the FBM has been discussed

in more details. In Chapter 3, we examine a variant of the model where the breaking

thresholds of the individual fibers are drawn from a power law distribution. In Chapter

4, we study a fiber bundle model with non-Hookean fibers and analyze its transition

from a brittle to a quasi-brittle phase in details. Finally, in Chapter 5, we have studied

the transition properties of a compound fiber bundle with bimodal distribution of the

breaking thresholds.
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CHAPTER 2

Scaling forms for relaxation times

of the fiber bundle model

2.1 Introduction

When a physical system in a stable state is disturbed by any external force, it always

tries to come back to its original state or to reach another stable state following its own

prescribed dynamics. This relaxation behavior of the system due to external agitation, that

involves moving between states, is characterized by a time period called the relaxation

time. The damage in a FBM due to application of an external load is an irreversible

change of stable states. It occurs in bursts of activity which is a recursive process of

breaking fibers followed immediately by redistribution of the load released by the broken

fibers. Since the stress applied to the bundle is a conserved quantity, this iterative process

goes on till the bundle relaxes to a stable state [12, 19]. Here, a stable state can either be

a state where the entire bundle has failed or a state where the bundle still has fibers intact

in it. It should be noted that the relaxation time T 1 in the case of the FBMs is not real

time. It is identified as a pseudo-time which is the total number of redistribution steps

required to arrive at a stable state.
1The work reported in this chapter is based the publication "Scaling forms of relaxation times of

the fiber bundle model", Chandreyee Roy, Sumanta Kundu and S. S. Manna, Phys. Rev. E, 87, 062137
(2013).
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It is important to understand that there are two different time scales involved in the

process of loading a fiber bundle. One is associated to the number of times load is applied

externally to the system that initiates an avalanche of breaking fibers and the other is

associated to the number of load redistribution steps within an avalanche, after load has

been applied externally to the system. In this chapter, the behavior of the relaxation time

is studied by adding load in finite amounts to the intact bundle that may cause more than

one fibers to fail at the same instant. In some realistic cases, fracturing in materials like

ceramic rocks is always associated with the phenomenon "aging" that can happen due

to thermally activated environmentally assisted stress corrosion [60]. Variations of the

FBM that includes its fibers breaking due to a time dependent accumulated damage have

been considered in Ref. [61–63]. However, in our study this mechanism has not been

used and a fiber is assumed to break immediately when the load per fiber acting on it

becomes greater than its threshold value. It has also been assumed that the load released

by a broken fiber gets distributed instantaneously to the the rest of the intact fibers. In

comparison there are some versions of the FBM where this process of load redistribution

takes place at a finite speed [64, 65].

In this chapter, using extensive numerical methods we analyze the average relaxation

time very near the critical point of the system at which the bundle fails completely. It

is identified as the critical load per fiber σc as defined in Sec. 1.6 and at this point the

system undergoes a change from a state of local failure to a state of global failure. Thus,

σc acts similarly to the critical point of a phase transition and the behavior of the bundle

around this point is associated with all characteristics of critical phenomena. In the case

of fiber bundle following ELS dynamics, there are no spatial correlations since fibers at

distances far away from the breaking fiber can also be affected by the load redistribution.

This chapter is organized in the following way. In Sec. 2.2 we describe the model in

detail and the algorithm used to estimate the relaxation time. In Sec. 2.3 we show that

away from the critical point the relaxation times obey the usual finite-size scaling theory.

Interestingly, we find that the amplitude of variation has no logarithmic dependence
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in the precritical regime as predicted in the mean-field theory of fiber bundles [12, 19].

Finally, we summarize our results in Sec. 2.4.

2.2 Model and Algorithm

We consider a completely intact bundle comprising of N fibers. Each of the individual

fibers are assigned breaking thresholds {bi} drawn from a uniform distribution between

{0, 1}. An external load per fiber σ is applied to the bundle. This causes the bundle to

relax in a series of T successive time steps, following its own dynamics described in

Sec. 1.7. When a fiber breaks, the released stress gets instantaneously distributed among

all the intact fibers, which may cause more fibers to break in one relaxation step. The

total number of relaxation time steps T (σ,N) is measured for the corresponding initial

applied load per fiber σ. This measurement is repeated for different σ values varying

from 0 to 1/2 at intervals of ∆σ = 0.001 using the same configuration of breaking

thresholds {bi}. The entire calculation is then reciprocated for a large sample of fiber

bundles with uncorrelated sets of breaking thresholds {bi} and for different bundle sizes

N .

It is observed that the average relaxation time 〈T (σ,N)〉 increases sharply as σ

increases and has a finite but large peak at σc ≈ 1/4. This is called the precritical regime

and in this regime it is seen that after the system has reached a stable state, there still exist

some intact fibers that have their breaking thresholds above the external load per fiber

acting on them. The height of the peak near the critical point increases with increasing N

as shown in Fig. 2.1. In the postcritical regime, 〈T (σ,N)〉 is seen to decrease gradually

with further increase of σ beyond σc. In this regime a bundle breaks off completely when

σ > σc is applied to it. These numerical results on the relaxation dynamics are supported

by mean-field calculations. In this analysis [12] it has been assumed that for a uniform

distribution of breaking thresholds, the critical load per fiber is σc = 1/4 for all bundle
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Figure 2.1: Plot of 〈T (σ,N)〉 against σ for bundle sizes N = 10000 (black), 30000 (red)
and 100000 (blue); σc ≈ 0.25.

sizes N . In the postcritical regime of σ > σc

T (σ,N) ≈ π

2
(σ − σc)−1/2 (2.1)

and in the precritical regime of σ < σc

T (σ,N) ≈ ln(N)

4
(σc − σ)−1/2. (2.2)

It is important to note that for fiber bundles with uniformly distributed breaking

thresholds the average critical applied load per fiber σc = 1/4 is valid only for infinitely

large bundles i.e., for N →∞. For bundles of finite sizes the critical load depends on N

and therefore, we need to calculate σc(N) for different values of N . The critical applied

load σαc (N) for a particular fiber bundle α using a given set of breaking thresholds {bi}

is defined as the maximum value of the applied load σ per fiber for which the system

remains in the precritical state. This means that if the applied load is increased by the

least possible amount to break only a single additional fiber among the intact ones, then

the system crosses over to the postcritical state. On an average, this requires enhancing

the applied load by 1/N .

The value of σαc (N) for the αth configuration of breaking thresholds can be nu-

merically estimated in two different ways. The first is the bisection method where the

simulation is started with an arbitrary pair of initial guesses for the values of σαpre and

σαpost corresponding to the precritical and postcritical states respectively. In the precritical
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state the relaxation dynamics stops without breaking the entire bundle whereas in the

postcritical state all fibers in the entire bundle break. The mean of the two stress values,

σ = (σαpre + σαpost)/2, is applied to the bundle and then allowed to relax to a stable

state. If the final stable state is precritical, then σαpre is raised to σ; otherwise σαpost is

reduced to σ. This procedure is iterated till σminpost − σmaxpre ≤ 1/N and at this stage we

define σαc (N) = (σαpre + σαpost)/2. This procedure is then repeated for a large samples

of un-correlated bundles α and their critical loads are averaged over them to obtain

σc(N) = 〈σαc (N)〉 for a fixed bundle of size N . Finally, the entire calculation has been

repeated for different N values.

The critical initial load per fiber σαc (N) can also be calculated in a more straight-

forward method. The breaking thresholds are arranged in ascending order i.e. bα(1) <

bα(2) < bα(3) < ... < bα(N) for a particular bundle configuration α. The bundle will support

the initially applied load per fiber σ if the conditions σ < bα(1) or σN/(N − 1) < bα(2)

or σN/(N − 2) < bα(3) or . . . σN < bα(N) are satisfied. If all these inequalities fail to

satisfy then the bundle will no longer support the load and it will break apart. Now if σ

is such that it is sufficient to break n fibers, then at this stage the bundle will support the

load if σN/(N − n) < bα(n+1), i.e.,

σ < [(N − n)/N ]bα(n+1). (2.3)

The term inside the parenthesis of the above equation decreases with n and bαn+1 is

an increasing function of n since the breaking thresholds are pre-arranged in increasing

order. Thus, the function at the right-hand side of Eq. (2.3) will have a maximum value

at some n and if the external load σ is raised to this maximum value, then the bundle

will break immediately. So the maximum of [(N − n)/N ]bα(n+1) determines the critical

load per fiber for the bundle α. Therefore [66–68],

σαc (N) = max
{
bα(1),

N − 1

N
bα(2),

N − 2

N
bα(3), ...,

1

N
bα(N)

}
. (2.4)

In both these methods the major share of the CPU is used up to sort the breaking

thresholds in an increasing sequence. The well-known QUICKSORT method takes CPU
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Figure 2.2: (a) Plot of σc(N) − 1/4 with N−0.666 for system sizes up to N = 31623
which fits nicely to a straight line that passes very close to the origin. (b) Data for larger
values of N upto 222 are plotted as [σc(N)− 1/4]N0.6615 against ln(N), which exhibits
approximately constant variation.

of the order of N ln(N) [69]. On comparing the two different methods we see that the

bisection method takes little more time, e.g., for a single bundle of N = 224 the bisection

method takes ≈ 1.15 times the time required in the second method.

2.3 Results

2.3.1 The critical stress

The σαc (N) for a particular bundle α is calculated for a bundle of size N . This is first

averaged over a large number of samples to get 〈σαc (N)〉 = σc(N). Then we calculate

these average values for increasing sizes of N and assume that they converge to a specific

value σc = σc(∞) as N →∞ according to the following form:

σc(N)− σc = AN−1/ν (2.5)

where ν is a critical exponent. The σc(N) values have been plotted in Fig. 2.2(a). We

show a plot of σc(N) − σc(∞) against N−1/ν using σc(∞) = 0.25 with 1/ν = 0.666

such that the plots fit to an excellent straight line. The least square fitted straight line

misses the origin very closely and has the form σc(N)−1/4 = 3.33×10−5 + 0.302N−1/ν .

In Fig. 2.2(b) the data for larger values of N is plotted as [σc(N)− 1/4]N0.661 against
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N on a lin - log scale. The intermediate part appears approximately constant implying

again that 1/ν ≈ 0.662. Thus, we conclude that ν = 1.50(2) and σc(∞) = 0.2500(1).

We conjecture that the finite size correction exponent ν = 3/2 and σc(∞) = 1/4

exactly [70]. These results are well known in the literature from analytical studies in

Ref. [67, 68]. It has been estimated that [67]

σc(N) = σC + 0.996N−2/3βc, (2.6)

where

βc =

[
P ′(xc)

2x4
c

2P ′(xc) + xcP ′′(xc)

]1/3

, (2.7)

where P ′(x) = dP/dx = p(x). In our case with the uniformly distributed breaking

thresholds in the range {0, 1}; P (x) = x which gives σc = 1/4, xc = 1/2, P ′(x) = 1,

and P ′′(x) = 0 for all 0 < x < 1, which makes βc = (1/2)5/3 ≈ 0.3150. This gives

σc(N)− σc = 0.996N−2/3βc = 0.3137N−2/3. (2.8)

Accordingly, apart from the exponent ν = 3/2, one can also check the value of the

amplitude A, which is estimated numerically as 0.302 compared to its analytically

obtained value of 0.3137. The correspondence between the two values is quite good and

this is a confirmation of the rigorous result of Ref. [67].

The distribution of the values of the critical loads per fiber σαc (N) for a large un-

correlated samples of fiber bundles of specific size N is known to follow a Gaussian

distribution around its mean value σc(N) = 〈σαc (N)〉. Let its cumulative distribution be

denoted byHN(σαc ). As the bundle size increases to very large values, this cumulative

distribution approaches its Gaussian approximation ΦN(σαc ) which is also the cumulative

distribution of the Gaussian form:

A exp
{
− (σαc − σc)2/(2s2)

}
, (2.9)

where σc = xc[1− P (xc)] = 1/4, s = γcN
−1/2 , and γc = xcP (xc)[1− P (xc)]

1/2 .

Using these results, it has been shown that [67]

χ(N) = max|HN(σαc )− φN(σαc )| < KN−1/6. (2.10)
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Figure 2.3: (a) Plot of the cumulative probability distribution of HN(σαc ) for N = 216

and for a sample size of 106 bundles with red . The cumulative distribution of the
Gaussian approximation φN(σαc ) also is plotted using black. (b) The maximal difference
χ(N) between two cumulative distributions is plotted against N using the log-log scale.
The slope is found to be 0.155(5).

This relation is also verified numerically in Fig. 2.3(a). For the bundle size N = 216 ,

the cumulative distributionHN(σαc ) obtained from simulation and the φN(σαc ) obtained

from the Gaussian approximation are plotted. In simulation, we study a sample size

of 106 bundles for each bundle of size N . The critical loads σαc s obtained are arranged

in the increasing order which implies that the number of such thresholds below a

certain σαc is simply theHN(σαc ). For each of these σαc values the cumulative Gaussian

function φN(σαc ) is calculated. The absolute value of the difference between these two

distributions is estimated for each σαc and their maximal value χ(N) is obtained. In Fig.

2.3(b) the function χ(N) is plotted with N on a log-log scale for 11 different bundle

sizes. A power-law variation of χ(N) is observed as follows:

χ(N) ∼ N−κ (2.11)

with κ = 0.155(5) [Fig. 2.3(b)].

2.3.2 Relaxation time at the critical point

After calculating the system-size-dependence of the critical loads σc(N) we studied

how the average relaxation time 〈T (σ)〉 diverges as the critical load is approached. For

every bundle α we first calculated its critical load σαc using either of the two methods
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Figure 2.4: Plot of 〈T (σ,N)〉 with the deviation from the critical point σ − σc(N) per
fiber forN = 216 (black), 218 (red) and 220 (blue). Here, for each bundle α first its critical
point σαc is determined. Then for the same bundle the relaxation times are measured for
prefixed deviation from σαc and then averaged over.

described in Sec. 2.2. Then, for the same bundle we calculated the relaxation times

for certain pre-fixed deviations |∆σ| = |σαc − σ| from the critical stress and averaged

them over different uncorrelated bundles. Fig. 2.4 shows how 〈T (σ,N)〉 approaches

the critical relaxation time as σ → σc(N) i.e., |∆σ| → 0. We observe that there exists a

distinctive jump in the relaxation time at the critical point when |∆σ| → 0 as opposed

to a continuous curve observed in Ref. [12]. We denote the limiting relaxation times

at the critical point in the precritical and postcritical states as 〈T pre(σc(N), N)〉 and

〈T post(σc(N), N)〉 respectively. Then we calculated the average relaxation time T when

the applied load per fiber takes the critical load value. For every bundle α, there are

two different values of T corresponding to the two states at the critical point. More

specifically T pre denotes the relaxation time corresponding to maximal σαpre, i.e., the

largest value of T in the precritical state. Similarly T post is the largest value of T in the

postcritical state corresponding to the minimal value of σαpost. It is observed that T post is

much larger than T pre. On averaging over a large sample size 〈T post〉/〈T pre〉 approaches

to 2 as N →∞ [71].

In Fig. 2.5(a) the values of 〈T pre(σc(N), N)〉 and 〈T post(σc(N), N)〉 against N are

plotted on a log− log scale for a wide range of values of N extending from 28 to 224

where at each step the system size is increased by a factor of 4. Both the curves are
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Figure 2.5: (a) Plots of the average maximal relaxation time 〈T post(σc(N), N)〉 in the
postcritical regime (red) and the average maximal relaxation time 〈T pre(σc(N), N)〉 in
the precritical regime (blue) against the system size N using log− log scale. Both plots
exhibit certain amount of curvature for small N . (b) Slopes η(N) between successive
points in (a) are estimated and η(N)− 1/3 are extrapolated against N−0.328 and N−0.262

for precritical and postcritical regime respectively. The solid lines are obtained by least
square fits that pass very close to the origin for both the plots.

seen to be nearly straight and parallel for large N but have slight curvatures for small N

values. Till N = 222 the averaging has been done for 106 independent configurations

of the fiber bundle and for N = 224 a total of 409000 independent configurations

have been used. Therefore, the data points are accurate enough to be analyzed more

precisely. The slope between two successive points in Fig. 2.5(a) is denoted as η(N)

and we observe that these slopes gradually approach 1/3 for larger system sizes in

both the precritical and postcritical regimes. This estimation was carried out by using

suitable extrapolation methods minimizing the errors. Fig. 2.5(b) shows the extrapolated

η(pre,N)−1/3 againstN−0.328 and η(post,N)−1/3 againstN−0.262 for the precritical

and postcritical regimes respectively. The individual plots fit excellently to straight lines

and their intercepts with the vertical axes are 0.00061 and 0.00085 respectively. Thus,

we conclude that when the system is loaded with the precise value of the critical stress

the relaxation time grows as a power of the system size as:

〈T (σc(N), N)〉 ∼ Nη, (2.12)

with η = 0.333(1).

36



Chapter 2 2.3. Results

0.000 0.001 0.002 0.003 0.004 0.005

σ
c
(N) - σ

0

2

4

6

8

10

12

14

16

<
T

(σ
,N

)>
 /

 l
n
(N

)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

σ
c
(N) - σ

10
0

10
1

<
T

(σ
,N

)>
 /

 l
n
(N

)

(a) (b)

Figure 2.6: (a) Comparison with the similar plots in Ref. [12]. Plot of 〈T (σ,N)〉/ln(N)
against ∆σ = σc(N)− σ for the precritical regime but for much smaller window of ∆σ
= 0.005 and for N = 220 (black), 222 (red) and 224 (blue) with N increasing from left
to right. On a lin-lin scale the three plots separate out from one another as ∆σ → 0.
(b) The data in (a) are replotted on a log− log scale and the absence of data collapse is
clearly visible in this plot, with N increasing from bottom to top.

2.3.3 Relaxation time away from the critical point

Next, we compare our data for relaxation times away from the critical point with similar

data in Ref. [12] where the assumption was that σc = 1/4 for all bundles. The plot for

〈T (σ,N)〉/ ln(N) against σc(N)−σ for the precritical regime for three different system

sizes is shown in Fig. 2.6(a) on a linear scale. The data for large sample sizes of the

bundle yielded very little noise enabling us to plot for a much smaller window size i.e.

∆σ = 0.005 compared to Ref. [12]. It is seen that as we approach the critical point i.e.

∆σ → 0, the three curves separate out distinctly and systematically from each other.

Thus, the data collapse exhibited in Ref. [12] is perhaps not working well in this limiting

situation. In Fig. 2.6(b) the same data have been plotted but using a log− log scale and

here the failure of data collapse is even more pronounced. This difference in the two

plots may be because the claimed validity of data collapse exhibited in Ref. [12] is for

a window size 10 times larger than ours. On approaching the critical point even closer

by reducing the window size we noticed that the scaling by ln(N) no longer works in

the vicinity of the critical point. Instead we show that a simple power-law scaling works

quite well.
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Figure 2.7: Scaling for the precritical regime. (a) Plot of 〈T (σ,N)〉 against σc(N)− σ
and for N = 220 (black), 222 (red) and 224 (blue) with N increasing from bottom to top.
(b) The data in (a) are scaled suitably: 〈T (σ,N)〉/Nη against [σc(N)− σ]N ζ exhibits a
good collapse of the data as ∆σ → 0 with η = 0.336 and ζ = 0.666, with N increasing
from left to right.

The data for 〈T (σ,N)〉 against σc(N)−σ is replotted in Fig. 2.7(a) for the precritical

regime in a log-log scale. The plots corresponding to three different N values are seen

to be completely separated from each other. We carry out a finite size scaling of the two

axes as shown in Fig. 2.7(b) by use of appropriate powers of the bundle size N . This

indeed results in an excellent collapse of the data for the three different bundle sizes.

This implies that the following scaling form may be used to describe the collapse:

〈T (σ,N)〉/Nη ∼ G[{σc(N)− σ}N ζ ]. (2.13)

where G is an universal scaling function of the scaled variable y. The best possible

tuned values of the scaling exponents obtained are η = 0.336 and ζ = 0.666. The

collapsed plots have two different regimes, an initial constant part for very small values

of ∆σ = σc(N) − σ. In this regime the scaled variable [〈T (σ,N)〉]/Nη is a constant,

say C. This means that 〈T (σ,N)〉 = CNη which is the retrieval of the Eq. (2.12). This

constant regime of 〈T (σ,N)〉]/Nη extends approximately up to {σc(N)− σ}N ζ ≈ 1.

This implies that the width of the constant regime is:

σc(N)− σ ∼ N−ζ . (2.14)

The exponent ζ can also be interpreted in the following way. For a certain bundle size
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Figure 2.8: Scaling for the postcritical regime. (a) Plot of 〈T (σ,N)〉 against σ − σc(N)
and for N = 220 (black), 222 (red) and 224 (blue) with N increasing from bottom to top.
(b) The data in (a) are scaled suitably: 〈T (σ,N)〉/Nη against [σ − σc(N)]N ζ exhibits a
good collapse of the data as ∆σ → 0 with η = 0.336 and ζ = 0.666, with N increasing
from left to right.

N there exists a specific value of |∆σ(eq,N)|, where 〈T (pre, σ,N)〉 = 〈T (post, σ,N)〉.

Around this window size 〈T (pre, σ,N)〉 > 〈T (post, σ,N)〉 for |∆σ(N)| > |∆σ(eq,N)|

and 〈T (pre, σ,N)〉 < 〈T (post, σ,N)〉 for |∆σ(N)| < |∆σ(eq,N)|. We have verified

that |∆σ(eq,N)| also approaches zero as N−ζ with ζ ≈ 0.666. The exponent ζ is

recognized as the inverse of the exponent ν defined in Eq. (2.5).

Beyond this constant regime there is the power law regime. Assuming that the

scaling in Fig. 2.7(b) is valid for all bundle sizes till N →∞ one would expect an N

independent power law form holds in this limit:

〈T (σ)〉 ∼ (σc − σ)−τ . (2.15)

To ensure that Eq. (2.15) indeed holds good we need to assume G(y) ∼ y−τ which

implies the following scaling relation:

− τζ + η = 0 (2.16)

and, therefore, τ = η/ζ = 0.50(1).

In Fig. 2.8 we show similar plots for the postcritical regime. We show a plot of

〈T (σ,N)〉 against σ − σc(N) on a log-log scale in Fig. 2.8(a). The same data is scaled

suitably and plotted in Fig. 2.8(b) as 〈T (σ,N)〉/Nη against [σ− σc(N)]N ζ which again
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shows a very nice data collapse. Here also the exponent values obtained are very similar

to the values found in the precritical regime with η = 0.336 and ζ = 0.666. The range of

validity of the finite-size scaling form in Eq. (2.13) may be determined from Fig. 2.8(b).

Here the data collapse is observed from the smallest value of [σc(N)− σ]N ζ to about

100. Therefore, the range of validity is 1/N < [σc(N)− σ] < 100N−ζ .

We have repeated all the calculations again for fiber bundles having their breaking

thresholds drawn from a more general distribution like the Weibull distribution. The

cumulative distribution is given by

P (σ) = 1− exp(−σρ) (2.17)

with the shape parameter ρ = 5 and the scale parameter 1. A similar use of Smith’s

results yield σc = (ρe)−1/ρ, xc = ρ−1/ρ, and βc = ρ(ρ+3)/(3ρ)e−1/3ρ. Using ρ = 5 gives

βc = 5−8/15e−1/15 = 0.3965. This gives

σc(N)− σc = 0.3949N−2/3. (2.18)

The values of σc(N) are estimated numerically using five different bundle sizes between

216 to 224 with the sizes increased by a factor of 4 at every step. We plot these values

against N−2/3 and extrapolate it to obtain σc(∞) = 0.5934(10) for N → ∞ and

A = 0.392(4). These results are very much consistent with the analytical results. We

have also estimated the exponents ν, η, ζ and τ whose values are quite consistent with

similar exponents with uniformly distributed breaking thresholds. These values of the

critical exponents have been summarized in Table 2.1.

2.3.4 Relaxation time for a deterministic FBM

Next, we consider a simpler version of the FBM which is the deterministic case. Here,

the breaking thresholds of the N fibers are uniformly spaced as bi = n/N where

n = 1, 2, 3, ..., N . Since this case does not have any randomness in the breaking threshold

values, no averaging is required and studying only one configuration is sufficient. The
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Figure 2.9: The variation of the critical load σc(N) on the system size N in the determin-
istic case. (a) Plot of σc(N)− 1/4 vs. 1/N gives an excellent straight line that passes
very close to the origin: σc(N)− 1/4 = −1.3× 10−15 + 0.5/N . (b) Same data as in (a)
but here [σc(N)− 1/4]N is plotted with N on a semi-log scale and the plot exhibits a
horizontal straight line indicating that quite possibly σc(N) = 1/4 + 1

2N
.

breaking thresholds are already arranged in ascending order. In spite of the absence of

randomness, the system shows a very systematic dependence on the size of the bundle

N . In Fig. 2.9(a) we show the plot of σc(N)− 1/4 with 1/N for different values of N

starting from 210 to 226 and we observe that all points fall on a straight line. It is seen

that these points fit excellently to a straight line by a least square fit that passes very

close to the origin: σc(N) − 1/4 = −1.3 × 10−15 + 0.5/N . To see the variation even

more distinctly we plot in Fig. 2.9(b) [σc(N)− 1/4]N vs. logN on a lin - log scale. The

fitted straight line is very much parallel to the log(N) axis and has the value 0.5000(1).

P(σ) σc ν η ζ τ

Uniform 0.250(1) 1.50(1) 0.336(5) 0.666(5) 0.50(1)
P (x) = x 1/4 3/2 1/3 2/3 1/2
Weibull 0.593(1) 1.50(1) 0.335(5) 0.663(5) 0.50(1)

P (x) = 1− e−x5 (5e)−1/5 3/2 1/3 2/3 1/2
DFBM 0.2500(1) 1.00(1) 0.50(1) 1.00(1) 0.50(1)

1/4 1 1/2 1 1/2

Table 2.1: Summary of the values of critical points and critical exponents for different
distributions of breaking thresholds, uniform and Weibull. The results for the determinis-
tic fiber bundle model (DFBM) are also included. For each distribution the numerical
estimates are given in the first row and the conjectured values are given in the second
row.

41



Chapter 2 2.3. Results

10
3

10
4

10
5

10
6

10
7

10
8

N

10
1

10
2

10
3

10
4

 T
post

(σ
c
(N),N)

T
pre

(σ
c
(N),N)

Figure 2.10: The deterministic case where breaking thresholds for individual fibers are
uniformly spaced at an interval of 1/N . The average relaxation time T (σc(N), N) has
been plotted with the bundle size N on a log− log scale for N = 210 to 226. The slopes
are 0.502 and 0.501 for the precritical and postcritical regimes respectively.

We conclude that the exact form of variation may be σc(N)− 1/4 = 1
2N

.

We also calculate the maximal relaxation times T pre(σc(N), N) and T post(σc(N), N)

at the critical loads for the deterministic FBM. Both these plots are shown in Fig. 2.10

against N using a log− log scale for the same sizes of the fiber bundles as in Fig. 2.9.

Unlike the case of the stochastic fiber bundles, here the plots fit nicely to straight lines

without any systematic curvatures for small bundle sizes. From the slopes we estimate

the exponents as 0.502 and 0.501 for the precritical and postcritical regimes respectively.

Thus, we conclude that a common value of η = ηpre = ηpost = 0.500(5) for both

exponents.

Finally, we study the finite size scaling of the relaxation times as a function of

deviation from the critical load as shown in Fig. 2.10. In Fig. 2.11(a), we have plotted

T (σc(N), N) against σc(N)− σ using the double logarithmic scales for bundles of sizes

N = 218 to 226. Even though each curve has considerable curvature, yet it is apparent

that as the bundle sizes become increasingly larger they tend to assume a power-law

form. A finite size scaling of these plots is shown in Fig. 2.11(b) to determine whether a

data collapse for very small deviations from the critical load is possible or not as we did

in the case of a stochastic fiber bundle. We do find a reasonably good collapse for the

small values of the abscissa when T (σ,N)/N1/2 is plotted against (σc(N)−σ)N . From
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Figure 2.11: The deterministic case: (a) Plot of T (σ,N) against [σc(N) − σ] for N =
218 to 226, the bundle size is increased by a factor of 4 at each step with N increasing
from bottom to top. (b) A finite-size scaling analysis of the data in (a) using the scaling
form in Eq. (2.13) with η = 1/2 and ζ = 1. Here, N increases from left to right.

the scaling exponent values η = 1/2 and ζ = 1 we conclude a value for the exponent

τ = 1/2 for the precritical regime. A similar analysis of the postcritical regime yields

same exponent values for η, ζ and τ .

2.4 Summary

To summarize, we have carried out extensive numerical calculations to study the re-

laxation behavior of the FBM with ELS dynamics. The numerical estimates of the

exponents associated with the critical points and the critical load per fiber have been

accurately calculated and they match well with their analytical counterparts known in

the literature. The critical load per fiber of a bundle of size N approaches its asymptotic

value of 1/4 and (5e)−1/5 for the cases when the breaking thresholds are distributed

uniformly and with Weibull distribution respectively. The numerical estimate of the

finite size correction exponent was obtained to be very close to its exact result ν = 3/2.

More importantly, the average relaxation time 〈T (σc(N), N)〉 is discontinuous at the

critical point and the limiting value of the relaxation grows as Nη(N). This exponent

η(N) depends on the bundle size and approaches its asymptotic value of 1/3. Our most

crucial result is that away from the critical point we do not find any ln(N) dependence
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of the average relaxation time 〈T (σ,N)〉 in the precritical regime as predicted before.

Our extensive numerical calculations suggests that it obeys the usual scaling form with

respect to N and the deviation from the critical point |∆σ|.
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CHAPTER 3

Fiber bundle model with highly

disordered breaking thresholds

3.1 Introduction

In nature, disorder can be found in the form of micro-cracks, grain boundaries etc. It

is known that disorder plays a crucial role in regulating the strength of materials and

also in the fracture process. The size and number of these cracks determine how strong

a material or a structure is going to be. A lot of studies have been done to get greater

insights in the role of disorder in material breakdown as it is important for technological

purposes in the process of making materials that have high strength and low weight, or

to build composite structures like bridges, buildings etc. Disorder is integral to natural

disasters such as landslide, mine collapse, earthquakes etc that cause great losses of

human lives and property. Fracture happens because of a cooperative effect of the

disorder and the cumulative effect of stress concentration around the disordered regions.

Homogeneous materials with very little disorder in them mostly fail through brittle type

fractures 1. A brittle fracture in nature is characterized by a very abrupt failure of the

system. Since it is a very fast process, predicting the failure is difficult. However, ductile
1The work reported in this chapter is based on the publication "Fiber bundle model with highly

disordered breaking thresholds", Chandreyee Roy, Sumanta Kundu and S. S. Manna, Phys. Rev. E, 91,
032103 (2015).
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or quasi-brittle type fractures is a gradual process. Since it proceeds slowly, we are

able to study some precursors for the process which helps us in not only understanding

the breakdown statistically, but also provides a way to be able to predict a catastrophic

failure in the system .

The FBM is able capture the concept of disorder appropriately [72,73]. This model is

characterized by a number of fibrous elements in the system that have different threshold

capacities. This is the source of disorder in the system and by tuning the extent of the

disorder in it, various properties of material breakdown can be understood. This extent

of disorder present in a fiber bundle determines whether the failure on application of

external stress will be brittle or quasi-brittle. When the failure of the weakest element

causes a catastrophic failure leading to complete breakdown of the system, then we

define it as a brittle fracture. On the other hand, when the external load has to be applied

several times to cause complete failure then it is defined as a quasi-brittle fracture. In

this chapter we study a version of the FBM following ELS dynamics. We introduce a

high disorder in the system by using a power law distribution to assign values for the

threshold capacities of the individual elements. This type of distribution can be useful to

study systems like traffic jams in roads, where the distribution of the width of the roads

are highly disordered and act as its capacity to accommodate cars that are analogous to

breaking thresholds of the individual elements of the FBM.

This chapter is organized in the following way. In Sec. 3.2 we discuss how the

high disorder has been incorporated in the model. Further, we discuss the effects of this

high disorder on the critical load of the fiber bundle at which it fails completely and the

fraction of fibers broken right before the catastrophic failure of the bundle. In Sec. 3.3

we study the avalanche-size statistics of the system having high disorder and finally we

summarize our results in Sec. 3.4.
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Chapter 3 3.2. Highly disordered fiber bundles

3.2 Highly disordered fiber bundles

In this version of the fiber bundle we consider an extreme case of heterogeneous disorder

where the breaking thresholds of the individual fibers are power law distributed. This

is similar to the fuse model discussed previously in Sec. 1.4.2 where every bond of

a square lattice was considered to be a fuse with unit resistance that could withstand

current upto a certain threshold value ic [15]. As in other models of the fiber bundle,

the source of disorder comes from the random distribution of breaking thresholds. The

power law distribution used ensures the high disorder in the system in a way such that

large number of fibers have small values of threshold and few fibers have very large

values of threshold. Therefore, the breaking threshold bi for the ith fiber is drawn from a

probability distribution p(b) ∼ b−γ with γ = 1. Initially, we draw a set of N uniformly

distributed random numbers qi within the range −1 < qi < 1. Then, the breaking

threshold b−10βqi
i for the ith fiber is assigned. As a result, the probability distribution

takes the form p(b) ∼ b−1 within the range 10−β to 10β where β is a cutoff parameter

that can be tuned to control the extent of disorder in the system [15].

3.2.1 The critical Stress

We used the same formulation as described in Sec. 1.6 to calculate the critical load

per fiber σc as a function of the cutoff parameter β for power-law distributed breaking

thresholds {bi}. We first evaluate the constant of proportionality by normalizing the

probability distribution. This gives us the following form of the probability density

p(b) = b−1/(2β ln 10) (3.1)

within the limits 10−β to 10β . Consequently the cumulative distribution has the form

P (b) =

∫ b

10−β
p(z)dz = ln b/(2β ln 10) + 1/2. (3.2)

By substituting this in the force Eq. (1.7), the expression of F (x) is obtained as

F (x) = Nx[1/2− lnx/(2β ln 10)]. (3.3)
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where x represents the load per fiber at the stable state as described in Sec. 1.6. Clearly

the function F (x) has a maximum at x = xc, for which dF (x)/dx = 0. This yields

xc = 10β/e and thus, the total critical applied load is obtained to be Fc ≡ F (xc) =

N10β/(2βe ln 10). Thus, the critical initial applied load per fiber is given by σc(β) =

Fc/N which results in

σc(β) = 10β/(2βe ln 10). (3.4)

If b∗ is denoted as the lowest value of the breaking thresholds then the condition

b∗ = xc implies that the weakest fiber failure causes complete breakdown of the bundle

since xc signifies the stress per fiber for which complete failure of the bundle occurs (see

Sec. 1.6). This fixes the upper bound of β denoted as βu = 1/(2 ln 10) uptil which the

weakest fiber failure leads to the complete breakdown of the bundle. Thus the complete

expression for σc(β):

σc(β) =


10β/(2e ln 10β) for β ≥ βu

10−β for β ≤ βu

(3.5)

The above expression for the average critical applied load per fiber σc(β) for a given

value of cutoff parameter β is valid only for infinitely large bundles, i.e., N →∞.

As discussed before, a bundle is defined to be brittle if the weakest fiber failure leads

to complete breakdown of the bundle; otherwise it is defined as quasi-brittle. By tuning

the value of β we can tune the width of the distribution of breaking thresholds and the

critical load per fiber σc(β) varies accordingly. When the value of β = 0, then all the

fibers have breaking thresholds equal to unity and so the σc(0) = 1. When β is very

small then the minimum breaking threshold has a value very close to unity. In these

cases, the fiber bundle tends to behave like a brittle bundle. This implies that the load

released after the failure of the weakest fiber is sufficient enough to break all other fibers.

As a result the critical load is equal to the value of the minimum breaking threshold

which is 10−β . This situation continues till β reaches βu, and therefore σc(β) decreases

as the strength of the weakest fiber, i.e., 10−β . When β increases further, gradually the
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Figure 3.1: Plot of the critical load per fiber σc(β) for a particular β calculated analyti-
cally (solid line) matches excellently with its numerical estimates (open circles).

fibers with higher breaking thresholds appear and they take over the control. Here the

weakest fiber failure is not enough anymore to break all the fibers in the system and the

bundle is referred to as a quasi-brittle bundle. Consequently, σc(β) must increase with

increase in β for large β with a minimum at β = βm. The exact position of the minimum

of σc(β) can be calculated by using the condition dσc(β)/dβ = 0 in Eq. (3.5) which

results in βm = 1/(ln 10). This is exactly twice the value of βu.

To obtain the critical load σc(β) numerically, we follow the procedure described in

Sec. 2.2. For a given value of β we first calculate the critical load per fiber σαc (β,N)

for a particular configuration of bundle α having N fibers with a given set of breaking

thresholds {bi}. This calculation is then repeated over a large number of uncorrelated

bundles α and the values of their critical loads are averaged over to obtain σc(β,N) =

〈σαc (β,N)〉. This procedure is again repeated for different values of N . The values of

σαc (β,N) are obtained following the algorithm described in Sec. 2.2 where the breaking

thresholds are first ordered in an increasing sequence. Then σαc (β,N) is calculated using

Eq. (2.4).

We assume that the average value of the critical load per fiber σc(β,N) for a given

value of β and for the bundle size N reaches its asymptotic value σc(β) according to the

following form:

σc(β,N)− σc(β) = AN−1/ν(β) (3.6)
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Figure 3.2: Variation of the critical load σc(β,N) with the system size N for β = 0.225
has been shown. Plot of σc(β,N)− σc(β) vs. N−0.624 with σc(β) = 0.596 shows a nice
straight line that passes very close to the origin.

where ν(β) is a critical exponent for the cut-off parameter β. We plotted the variation

of σc(β,N) against N−1/ν(β) for N = 218 to 224, N being increased by a factor of 4

at each stage. We tune the value of ν(β) for a particular β so that at a specific value

of ν(β) we get a best fitted straight line by the least square fit method. Using this best

value of ν(β) and on extrapolation to N → ∞ we get σc(β). In Fig. 3.1 we exhibit

an excellent matching of the analytical data with the numerical values of σc(β) for the

range 0 < β ≤ 2.

Next, we investigate the dependence of the finite-size correction exponent ν(β) on

the cutoff parameter β. In the case of a uniform threshold distribution we discussed in

Sec. 2.2 that the plot of σc(N)− σc as a function of N−1/ν gives an excellent straight

line with σc = 1/4 and ν = 3/2 [67,68,74]. Similarly, in our case of a highly disordered

distribution, we plot σc(β,N) − σc(β) against N−1/ν(β) for different values of β. For

example, we show in Fig. 3.2 a particular case for β = 0.225 where the best possible

value of ν(β) is found to be 1.603. In this way the critical exponent ν(β) is calculated

for different β and its variation is shown in Fig. 3.3(a) using N = 210 to 216, 214 to 220

and 218 to 224. The value of ν(β) first increases, attains a maximum value (≈ 1.63), then

decreases and then saturates to 1.5 for higher values of β. The same data in Fig. 3.3(a)

can be collapsed on top of each other when plotted against (β − βu)N0.33 as shown in

Fig. 3.3(b). Thus we conclude that the nature of the critical exponent ν(β) remains same
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Figure 3.3: (a) Plot of ν(β,N) vs β for systems of different sizes. The value of ν(β,N)
is calculated using the four bundle sizes from N = 210 to 216 (black), 214 to 220 (blue)
and 218 to 224 (red); N is increased from left to right. (b) A collapse of the data of the
same three system sizes in (a) works excellently for a suitably scaled β axis.

for large system sizes.

3.2.2 Fraction of broken fibers

We calculate the fraction of broken fibers denoted by fb(β) just before the complete

breakdown of the bundle which is observed to be a function of the cutoff parameter β.

Since the fiber bundle fails completely at xc, so the quantity fb(β) is calculated as:

fb(β) =

∫ xc

10−β
p(x)dx = 1− 1/(2β ln 10). (3.7)

The fraction of broken fibers fb(β) is always a real and positive quantity. Thus, the

condition 1 − 1/(2β ln 10) > 0 again reproduces the result that for β < 1/(2 ln 10)

the bundle will be brittle, i.e., weakest fiber failure will lead to complete failure of the

bundle.

To find fb(β) for a given value of β numerically, we use the same method used

to calculate σc(β). We increase the external load quasistatically until the bundle fails.

The fraction of broken fibers fb(β,N) just before complete breakdown of the bundle

is calculated for a particular β of bundle size N and averaged over a large number of

uncorrelated samples. This procure is repeated for six values of N = 216, 218, ..., 226 and

assumed that it converges to fb(β) for N → ∞. The extrapolated values of fb(β) are
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Figure 3.4: The fraction of broken fibers fb(β) for a particular value of β right before
complete breakdown of the bundle is plotted using the analytical expression given in Eq.
(3.7) with solid line. The numerically obtained data represented by open circles matches
very well with the analytical curve.

plotted against β in Fig. 3.4. The analytical expression is seen to match very well with

its numerical estimates.

3.3 Avalanche size distribution

A stable state in a fiber bundle is a state when the breaking thresholds of the intact fibers

in the bundle are greater that the stress acting through them. When an external load is

applied to an intact bundle to break only the weakest fiber, then it may trigger a cascade

of fiber failures which ends when the bundle reaches a new stable state. The total number

of fibers that fail in this event is called the avalanche size and is denoted by ∆. Starting

from a completely intact fiber bundle, this process is carried out repeatedly until a state

of global failure is achieved by raising the external load quasistatically, breaking only

the weakest fiber among the intact ones after every avalanche. It is well known in the

literature that the probability of the avalanche sizes D(∆) is a power-law [41, 53] for

fiber bundles having uniformly distributed breaking thresholds following ELS dynamics:

D(∆) ∼ ∆−ξ (3.8)

with ξ = 5/2. It is has been shown before in Ref. [54, 75] that when the width of the

uniform distribution is changed then the exponent ξ experiences a crossover from 3/2 to
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5/2. The same crossover is seen to happen in a highly disordered fiber bundle as well

when the cut-off parameter β is varied. To exhibit this crossover we follow the method

given by Ref. [75]. For a bundle having large number of fibers, the number of avalanches

of size ∆ is given by [53]

D(∆)

N
=

∆∆−1e−∆

∆!

∫ xc

0

p(x)r(x)[1− r(x)]∆−1e∆r(x)dx, (3.9)

where,

r(x) = 1− xp(x)

1− P (x)
. (3.10)

The expression for D(∆) can be simplified to the following form [75]:

D(∆)

N
=

∆∆−2e−∆

∆!

p(xc)

|r′(xc)|
(1− e−∆/∆c), (3.11)

with

∆c =
2

r′(xc)2(xc − b∗)2
. (3.12)

Using the Stirling approximation ∆! = ∆∆e−∆
√

2π∆, Eq. (3.11) can be written as

D(∆)

N
= C∆−5/2(1− e−∆/∆c), (3.13)

where C = (2π)−1/2p(xc)/|r′(xc)| is a constant. From Eq. (3.13), a clear evidence of

crossover in the exponent ξ around the avalanche size ∆c is prominent. So we have:

D(∆)

N
∝


∆−3/2 for ∆� ∆c,

∆−5/2 for ∆� ∆c.

(3.14)

In our case, we use power law distribution p(b) ∼ b−1 in the range from 10−β to 10β

to obtain r′(xc) = −e/10β , xc = 10β/e and b∗ = 10−β . Substituting these values in Eq.

(3.14) we get the crossover avalanche size:

∆c(β) =
2

(1− e10−2β)2
. (3.15)

This crossover of the exponents has also been studied using numerical simulations.

For β = 1/(2 ln 10), Eq. (3.15) yields ∆c = ∞. This implies that for this particular
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Figure 3.5: (a) Log-log plot of the binned data for avalanche size distribution D(∆) vs.
∆ for β = βu = 1/(2 ln 10) for N = 216, 218...226 (from left to right). (b) A finite-size
scaling works well: D(∆)Nη against ∆N−ζ exhibits a good collapse of data with η =
1.007 and ζ = 0.671, implying ξ = η/ζ = 1.50(1). This value is consistent with the
directly measured value of 1.50(2) from the slopes in the intermediate region. The
crossover is not observed here since ∆c =∞ for this particular value of β.

value of β, only the power law with exponent ξ = 3/2 is observed as any avalanche of

finite size ∆ will be less than the value of ∆c. The numerical data for avalanche size

distribution for β = 1/(2 ln 10) has been plotted in Fig. 3.5(a) for six different values of

N starting from N = 216 to 226 where N is increased by a factor of 4 at each stage. For

N = 216 to 222 the data has been averaged over 106 samples and 400 000 and 100 000

samples for 224 and 226 respectively. In Fig. 3.5(b) we plot the same data in (a) and scale

the axes with suitable powers of the bundle size N to get an excellent collapse of the

data. From the scaled data we obtain the following scaling form:

D(∆)Nη ∼ G[∆/N ζ ] (3.16)

where G(y) is an universal scaling function of the scaled variable y = ∆/N ζ . The best

possible tuned values of the scaling exponents obtained are η = 1.007 and ζ = 0.671.

Using these scaling exponents the value of ξ = η/ζ = 1.50(1) is calculated, which

matches well with the analytical result of 3/2 [76].

We carry out the same analysis for three different β values which are 0.22, 0.24 and

0.28. By substituting these values of β in Eq. (3.15) we have obtained ∆c(β) = 11 741,

200.4 and 31.66 respectively. We can clearly observe a crossover in the exponent value ξ
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Figure 3.6: The avalanche size distribution for β = 0.22 (black), 0.24 (red) and 0.28
(blue) (from right to left) for bundles of size N = 224. Slopes of the curve are ≈ 1.5 and
≈ 2.5 for small and large avalanche sizes. The crossover size ∆c(β) are approximately
11741, 200.4 and 31.66 respectively evaluated using Eq. (3.15).

around ∆ = ∆c(β) as shown in Fig. 3.6 for N = 224. The slope of the curve gradually

crosses over from ≈ 1.5 to ≈ 2.5 for large values of ∆. It has also been observed that as

β is increased, ∆c(β) gradually shifts towards the origin and therefore the regime over

which ξ = 5/2 is valid, gets extended. These results are consistent with Ref. [54, 75]

where this kind of a crossover in the exponents has been observed for the FBM with

uniformly distributed breaking thresholds that ranged between a certain lower cut-off

b1c and unity. In this case the avalanche sizes smaller (larger) than some crossover size

∆(b1c) correspond to avalanche size exponents 3/2 (5/2). This implies that in our model,

even for the highly heterogeneous distribution of breaking thresholds, similar crossover

between the same two exponents takes place across the crossover avalanche size ∆c(β).

Lastly, we calculate the total number of avalanches Λ(N) required to break the entire

bundle and it has been observed that it depends on the system sizes N as Nχ, where

χ = 0.336 and 0.985 for β = 1/(2 ln 10) and 0.240 respectively. The log-log plot of

Λ(N) against N for these two values of β fits to excellent straight lines a shown in Fig.

3.7. We conjecture that χ may be 1/3 and 1 exactly for β = βu and β > βu respectively.
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Figure 3.7: Plot of the average number of avalanches Λ(N) required to break the bundle
of size N on a log-log scale: for β = 1/(2 ln 10), Λ(N) ∼ N0.337 (filled circles) and for
β = 0.240, Λ(N) ∼ N0.985 (open circles).

3.4 Summary

We have studied various properties of the FBM following the ELS dynamics with indi-

vidual fibers having breaking thresholds drawn from a power law distribution given by

p(b) ∼ b−1 within the limits 10−β to 10β where β is considered to be a cutoff parameter.

First, we calculated the critical initial load per fiber σc(β) required for complete break-

down of the bundle which is found to be a β dependent quantity analytically as well as

numerically. We found a good correspondence between the two data. The σc(β) first

decreases, reaches a minimum and then increases with increasing values of β. When β

is very small, the weakest fiber failure triggers a massive avalanche that causes complete

breakdown of the bundle. This implies that σc(β) is equal to the breaking threshold value

of the weakest fiber, i.e. 10−β. This behavior continues till β = βu and is analogous

to brittle failure of materials. For values of β > βu, equating the external load to the

strength of the weakest fiber is no longer sufficient to break the entire bundle even though

a large number of fibers having small breaking thresholds still dominate the system.

This is analogous to quasi-brittle type failure of the fiber bundle. With more increase

in the value of β, the number of avalanches required for the breakdown of the bundle

gradually increases and the σc(β) slowly increases from the weakest strength of 10−β

but for β > βu, σc(β) remains smaller than 10−β . Thus, there exists a minimum in σc(β)
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given by βm = 2βu after which it keeps on increasing with increase in β value. At very

large values of β, there exist very few extremely strong fibers in the bundle and they

cause the critical load of the system to increase since the external load has to be raised to

σc(β) ≈ 10β to break the strongest fiber. This salient feature is a direct consequence of

the power law distribution used for the breaking thresholds.

We have also calculated the fraction of fibers fb(β) just before the last avalanche

and we have observed a good correspondence of the analytical and the numerical results.

More importantly, we have shown numerically that the critical load σc(β,N) approaches

its asymptotic value as σc(β,N) = σc(β) + AN−1/ν(β). This variation of the critical

exponent ν(β) was found to be a β dependent quantity which is first seen to increase

sharply with β, reaches a maximum, then decreases and then finally saturates to a value

≈ 3/2 which is the same as the value of the finite size exponent of a fiber bundle

with uniform distribution of breaking thresholds following the ELS rule. We also did

a statistical analysis of the avalanche sizes. The avalanche size distribution is seen to

follow a power law with an exponent ξ that crosses over from 3/2 to 5/2 through a

crossover avalanche size ∆c(β).
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CHAPTER 4

Brittle to quasi-brittle transition in

bundles of nonlinear elastic fibers

4.1 Introduction

All studies regarding the FBM in the literature consider massless elastic fibers with a

linear stress-strain curve following the Hooke’s law. It is observed that even though

every individual fiber is linearly elastic, the model as a whole is not due to interaction of

the fibers with one another through stress redistribution processes. This ultimately leads

to very interesting results as have been discussed in the previous chapters. However, in

practice, the precise validity of Hooke’s law is limited to a very small region of loading.

The deviation from linearity is observed when the materials are subjected to larger

mechanical stress. To our knowledge, no systematic study of a fiber bundle with fibers

following nonlinear elastic fibers has been done, i.e., when the stress grows nonlinearly

against increasing strain. Therefore, it would be important to study the behavior of

loaded materials under nonlinear stress-strain response functions of the individual fibers

within the framework of the FBM.

In this chapter 1 we present a version of the fiber bundle with the individual fibers hav-
1The work reported here is based on the publication "Brittle-to-quasi-brittle transition in bundles of

nonlinear elastic fibers", Chandreyee Roy and S. S. Manna, Phys. Rev. E, 94, 032126 (2016).

58



Chapter 4 4.2. Algorithm

ing nonlinear stress-strain characteristics. We study the brittle to quasi-brittle transition

in such cases and have observed that it takes place at a specific value of a continuously

tunable parameter parameter αc that characterizes the nonlinearity of the fibers. This is

in contrast to the results of the existing literature of linear fiber bundles where a similar

brittle to quasi-brittle transition takes place when the width of the probability distribution

of the breaking thresholds of individual fibers is tuned. In this chapter we have mainly

considered four different nonlinear forms of the stress-strain characteristic curve of the

fibers.

The sections are arranged in the following way. In the Sec. 4.2 we have described the

algorithm used for the numerical studies. In Sec. 4.3 we have calculated the critical stress

of the fiber bundle. In Sec. 4.4 we describe the transition from brittle to quasi-brittle

phase in three different ways and then we study this transition in terms of the relaxation

time in Sec. 4.5. Avalanche size distributions are discussed in Sec. 4.6. In all the

above sections we first describe at length, our numerical as well as analytical results for

exponential form of nonlinearity followed by brief description of the results of other

nonlinear forms. A number of additional cases also exhibit the brittle to quasi-brittle

transitions and have been discussed in Sec. 4.8. Finally, we summarize in Sec. 4.9.

4.2 Algorithm

Let the general functional form of the nonlinear dependence of stress (s) on the strain

(x) for an arbitrary fiber be denoted by

s = G(x). (4.1)

In the case of linear fibers where each of the individual fibers follow Hooke’s Law, the

form of G(x) is simply given by G(x) = x. Unlike the linear case of FBM, here a fiber

breaks if the external load acting on it is such that the strain produced in it following Eq.

(4.1) exceeds a preassigned critical value of the strain. Therefore, for an arbitrary bundle

λ, the individual fibers i have their breaking strain values xλi drawn from a uniform
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probability distribution p(x) between {0, 1}. Consequently, its cumulative probability

distribution is given by P (x) = x when 0 ≤ x ≤ 1 and 0 for x > 1.

For a particular bundle λ every fiber will have a breaking strain {xλi } and a cor-

responding set of breaking stress {sλi } calculated using the Eq. (4.1). Both these

sets of breaking threshold values of strain and stress are arranged in increasing or-

der for a bundle having N fibers such that xλ(1) < xλ(2) < xλ(3) < ... < xλ(N) and

sλ(1) < sλ(2) < sλ(3) < ... < sλ(N) respectively. To an intact fiber bundle an external load is

applied gradually such that every fiber gets strained gradually. Let the uniform strain x

in all the fibers be increased till it reaches the minimum value of the strain xλ(1) which is

by definition the weakest fiber in the bundle. This fiber breaks immediately and releases

a load equal to G(xλ(1)). The released load is then shared equally among all the remaining

N − 1 intact fibers in the bundle. Due to this, the load on these fibers gets uniformly

enhanced. Let the magnitude of this enhanced load be s. Then the corresponding value of

strain, developed in all the intact fibers because of the enhanced load, can be calculated

from the inverse function x = G−1(s). As a result, this can cause more fibers to have

their breaking strains exceeded by the acting strain which may lead to a cascade of

broken fibers which is defined in previous chapters as an avalanche. Then we wait

for the system to stabilize i.e. all the fibers in the stable state will have their breaking

strains above the external strain acting on them. To trigger a new avalanche we increase

uniformly the value of strain by controlling the external load so that the next minimal

value of breaking strain is reached. Because of the nonlinearity of Eq. (4.1), we need to

consider the evolution of both the stress and the strain for every fiber separately. Though

the breaking strains are uniformly distributed, their corresponding breaking stress values

are not and is determined by the function G(x). This is the root cause for non trivial

results in this model.

The critical load per fiber σc(α) can be found out in the same method as described

in the earlier chapters i.e. by using the set of breaking stresses {sλi }. Here, α is the

tuning parameter that characterizes the nonlinear stress strain curve. The critical load
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σλc (α,N) for an arbitrary bundle λ with a particular value of α for bundle size N is

calculated and then averaged over many samples to get σc(α,N) = 〈σλc (α,N)〉. This

entire calculation is then repeated for different values of N assuming that the critical

load per fiber converges to a value in the asymptotic limit according to the following

equation:

σc(α,N)− σc(α) = AN−1/ν(α) (4.2)

where ν(α) is a critical exponent that is a function of the tuning parameter α.

4.3 The critical stress

We have considered several cases of our nonlinear FBM. We first consider the exponential

growth of stress as a function of strain: s = G(x) = eαx. Let the externally applied load

be denoted by F (x), which is a function of the uniform strain x of all the intact fibers in

the stable state. This total load can be written as [12, 18, 19]:

F (x) = Ns[1− P (x)] = Neαx[1− x]. (4.3)

In the above equation the external load F (x) has a maximum at x = xc. Thus, the

condition dF/dx = 0 yields the following equation:

αeαxc [1− P (xc)]− eαxcp(xc) = 0 (4.4)

from which we get the results xc = (α− 1)/α and Fc = Neα−1/α for a nonlinear bundle

with a uniform distribution of breaking thresholds. The total critical applied load Fc

corresponds to the critical initial load per fiber [18, 19]

σc(α) = Fc/N = eα−1/α. (4.5)

To check this expression, we have numerically estimated the values of the critical

load per fiber σc(α,N) for a specific value of α = 2 and for different bundle sizes N ,

using the algorithm discussed in Sec. 4.2. The variation of σc(α,N) is plotted against

N−1/ν(α) with N values increasing from 253 to 31 623. The value of ν(α) was tuned to
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Figure 4.1: G(x) = eαx: (a) Plot of the critical value of σc(α,N)− σc(α) with respect
to N−0.665 with α = 2 for N = 253 to 31623. The least square fit line has the form
σc(α,N)− 1.3591 = 2.0733N−0.665. Therefore, σc(α)=1.3591 which is very close to
its analytical value e/2 in Eq. (4.5) for α = 2. (b) Plot of the variation of σc(α) against
α. The solid line represents the analytically obtained expression given by Eq. (4.5) and
the circles represent the numerical data which matches well with the analytical values.

get a specific value for which the plots fit excellently to a straight line using the least

square fit method.Using this specific value of ν(α) and on extrapolation to N →∞ we

obtained σc(α) = σc(α,∞) as shown in Fig. 4.1(a). This analysis gives ν(2) = 0.665

and we have observed that the value of ν(α) does not depend explicitly on the value of

α and is approximately 2/3 for all values of α. Further, we have plotted the variation of

σc(α) with respect to the tuning parameter α in the range 1 ≤ α ≤ 5 in Fig. 4.1(b). The

analytical form obtained in Eq. (4.5) matches excellently with the numerical estimates. It

is seen that for α > 1 the bundle is always in the quasi-brittle regime and for 0 < α < 1

the bundle is in the brittle regime. This has been discussed in great detail in the next

sections of this chapter. For the brittle phase, we get σc(α) ≈ 1 and the corresponding

ν(α) ≈ 1 for all values of α.

For the stress-strain characteristic G(x) = xα, the external load

F (x, α) = Nxα[1− x], (4.6)

xc(α) = α/(α + 1), (4.7)

σc(α) = αα/(α + 1)(α+1). (4.8)

It is to be noted that by putting α = 1 in the above expressions, we get back the well
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known results for the linear fiber bundle case following the ELS dynamics.

Similarly, for G(x) = xeαx, the external load

F (x, α) = Nxeαx[1− x], (4.9)

xc(α) = (α− 2 +
√

4 + α2)/2α, (4.10)

σc(α) =
1

α2
e

1
2

(α−2+
√

4+α2)(
√

4 + α2 − 2). (4.11)

Here also, we get back the well established results in the limit of α → 0 on applying

L’Hospital’s rule.

4.4 Brittle to quasi-brittle transition

The definitions of a brittle and a quasi-brittle bundle in the nonlinear FBM case is the

same as described in previous chapters which states that a fiber bundle is defined to be

‘brittle’, if and only if, the failure of the weakest fiber causes the failure of the complete

bundle. Thus, if the external load is tuned in such a way that only the fiber having

minimal breaking strain breaks, leading to the failure of all the remaining fibers in the

bundle in the form of a cascading process, then such a bundle is said to be brittle. On the

other hand, if a bundle needs at least two avalanches for the global failure, then it is said

to be ‘quasi-brittle’. Here, we use the parameter α as a tuning parameter to observe the

transition from a brittle phase to quasi-brittle phase since it characterizes the stress-strain

characteristics of the individual fibers. We observed that the transitions takes place at a

specific value of α = αc.

4.4.1 Probability distribution of brittle states

To estimate the value of αc where the brittle to quasi-brittle transition takes place we

consider a few quantities that characterize this transition. The first quantity we study

numerically is the probability P (α,N) that a randomly selected sample of the fiber

bundle is found to be brittle. For a given value of α, we construct a random sample of
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Figure 4.2: G(x) = eαx: (a) Plot of the probability of brittle bundles P (α,N) against α
for N = 208 (black), 210 (red), 214 (blue), and 226 (magenta) (N increasing from right
to left). (b) Plot of αc(N) − αc, with αc = 1 against N−0.333. The least square fitted
straight line misses the origin very closely.

the fiber bundle and raise the external load to break the weakest fiber with the smallest

breaking strain [58]. Then we use a large number of samples and calculate the fraction of

bundles that fail completely due to weakest fiber failure out of all the samples considered.

We plot this fraction in Fig. 4.2(a) and it is seen to be a function of the tuning parameter α

for different values of N for the case when G(x) = eαx. For the bundles of arbitrary size

N , when the value of α is very small, the probability is unity and it gradually decreases

and ultimately vanishes with increase in the value of α. The minimum value of α where

P (α,N) = 0 is considered to be the transition point for the bundle of size N and is

denoted by αc(N). This is then repeated for several values of N and the variation of

αc(N) with respect to N is then plotted in Fig. 4.2(b). We assume that αc(N) converges

to its asymptotic value αc according to

αc(N) = αc +BN−1/κ. (4.12)

Fig. 4.2(b) shows the best fitted plot of αc(N)− αc against N−1/κ for αc ≈ 1.0 and 1/κ

= 0.333.

A similar plot of P (α,N) against α for the case G(x) = 1 + xα shows an even

sharper transition from quasi-brittle (α < 1) to brittle (α > 1) transition. The αc(N)

values for different bundle sizes, when extrapolated against N−0.23, gives nicely αc = 1
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Figure 4.3: G(x) = eαx: (a) Plot of the average avalanche size ∆m(α,N) against α for
N = 216 (black), 218 (red), and 220 (blue) with N increasing from bottom to top. The
values of α for the maximum value of ∆m(α,N) defined in Eq. (4.13) are 1.030, 1.021
and 1.011 respectively, leading to αc = 1 as N → ∞. (b) Finite size scaling of the
average avalanche size ∆m(α,N)N−0.666 against (α − αc)N0.333 using the data in (a)
exhibits an excellent data collapse.

again. No such transition has been observed for G(x) = xα and xeαx.

4.4.2 Estimation of αc from the moment analysis of

avalanche sizes

We can also estimate the transition point αc by using the moment calculation method

of the size of the avalanches. In general, the n-th moment of the avalanche sizes is

denoted by 〈∆n(α,N)〉. The average avalanche size can be defined as the ratio of second

moment to the first moment of the avalanche sizes [59],

∆m(α,N) = 〈∆2(α,N)〉/〈∆(α,N)〉. (4.13)

This quantity is plotted as a function of α in Fig. 4.3(a) for three different system sizes

N = 216, 218 and 220. As the value of α increases the average avalanche size also

increases, attains a maximum and then decreases. The maximal value of the average

avalanche increases with increasing size of the system. Moreover, the position of the

maximum, i.e., the value of α where the maximum value occurs is seen to drift towards

αc = 1 as N increases.

65



Chapter 4 4.4. Brittle to quasi-brittle transition

0 0.5 1 1.5 2

α

0

0.1

0.2

0.3

0.4

0.5

f b
(α

,N
)

Figure 4.4: G(x) = eαx: Plot of the fraction of broken fibers fb(α,N) before the last
avalanche against α for N = 208 (black), 210 (red), and 214 (blue) with N increasing
from left to right. The plot with filled circles represents the analytical form given in Eq.
(4.14).

Fig. 4.3(b) exhibits an excellent collapse of the data for the exponents of the three

curves in Fig. 4.3(a). The abscissa and the ordinate are suitably scaled by the system

size dependent factors N0.333 and N−0.666 respectively. We observe that a plot of

∆m(α,N)N−0.666 against (α− αc)N0.333 exhibits an excellent data collapse for αc = 1.

Similar moment analysis for the G(x) = 1 + xα case also gives the same result of

αc ≈ 1.

4.4.3 Fraction of fibers broken before the last avalanche

The next quantity that we study is the fraction of broken fibers just before complete

breakdown of the bundle denoted by fb(α). Since at x = xc the fiber bundle fails

completely, so the quantity P (xc) gives the fraction of fibers that has already broken due

the strain xc. Therefore, the fraction of fibers just before the last avalanche will be given

by

fb(α) = P (xc) = (α− 1)/α. (4.14)

The quantity fb(α,N) has been plotted against α for different system sizes N = 28, 210,

and 214 in Fig. 4.4. As N increases, the plots can be seen to tend towards the analytical

plot given by Eq. (4.14). The quantity fb(α) = 0 by definition when α < αc since the

bundle is brittle and all the fibers break in one avalanche. On the other hand it will be
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non-zero for α > αc since the bundle is in the quasi-brittle state and it requires more

than one avalanche to break the whole bundle completely. The condition that fb(α) ≥ 0

is a real and positive quantity reinforces the fact that the transition occurs at αc = 1.

For G(x) = xα case,

fb(α) = α/(α + 1) (4.15)

and this retrieves correctly fb = 1/2 for the ordinary ELS for α = 1.

Similarly, for G(x) = xeαx,

fb(α) = (α− 2 +
√

4 + α2)/2α. (4.16)

Here, the specific limiting case of α → 0 corresponds to G(x) = x and therefore,

limα→0 fb(α) = 1/2 is exactly the result of the ordinary ELS model with Hookean

fibers.

4.4.4 Phase diagram

We can now generalize the nonlinear form by subtracting a constant term as, G(x) =

eαx − a, where a is a tuning parameter that varies between zero and unity. When a = 0

we get back the same case as described above and when a = 1 then the nonlinear curve

G(x) = eαx − 1 starts at the origin. For this case, we observe no transition from a brittle

to quasi-brittle phase. However, for all value of 0 < a < 1, we observe the brittle to

quasi-brittle phase transition, and the critical point αc(a) is measured for a number of

values of a. To calculate it analytically, we first determine the force expression for the

nonlinear stress-strain characteristic function G(x) = eαx − a which is given by:

F (x) = N(eαx − a)(1− x). (4.17)

If dF (x)
dx

∣∣∣
x=0

= N(α + a− 1) < 0, then the bundle is brittle, else it is quasi-brittle [59].

This condition implies that, the relation between αc and a is

αc + a = 1. (4.18)
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Figure 4.5: G(x) = eαx: Subtracting a tunable parameter a from G(x) we calculate the
critical value αc(a) of the transition point as a function of a. For 11 different equi-spaced
values of a, the values of αc are estimated numerically and plotted. These points fit
excellent with the Eq. (4.18) which describes the boundary between the brittle and the
quasi-brittle regimes.

We have plotted numerical estimates of αc(a) against a for 11 equi-spaced values of

a in Fig. 4.5 using the same method described in the previous sections along with

the analytical form given by Eq. (4.18). We observe a good correspondence between

the numerical and the analytical data. The line given by Eq. (4.18) is the boundary

of the brittle and the quasi-brittle phases. We have also observed transition in cases

G(x) = eαx and 1 + xα which are curves that do not start from the origin and have an

initial discontinuity. We have shown here that as the magnitude of the discontinuity is

continuously reduced to zero, the phase transition disappears only when the discontinuity

vanishes [77].

4.5 The relaxation time

Next, we study the relaxation time T as described in details in Chapter 2. When we load

a bundle quasistatically, then the first avalanche is always triggered from the failure of

the weakest fiber. If the bundle is in the brittle phase, then this particular avalanche is a

catastrophic one and leading to complete failure of the bundle. On the other hand, if it is

in the quasi-brittle phase, then this avalanche ceases to spread after the failure of few

fibers. The lifetime of an avalanche is determined by the number of discrete updating
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Figure 4.6: G(x) = eαx: (a) Plot of the average relaxation time 〈T (α,N)〉 against
∆α = α − αλc . The brittle and the quasi-brittle phases correspond to the negative
and positive values of ∆α. The bundle sizes are N = 210, (black) 217 (blue), and 224

(red) (N increases from bottom to top). (b) Variations of the maximal relaxation times
〈Tmb (α,N)〉 (upper curve) and the 〈Tmqb (α,N)〉 (lower curve) in the brittle and quasi-
brittle regions respectively. The solid lines are the fitted functional forms given in the
text.

steps. Here we study the relaxation of only the first avalanche and denote its lifetime by

T . We observe that there is a vast difference in the values of T for these two regimes.

We study how the relaxation time diverges as the critical value αc is approached. For an

arbitrary fiber bundle λ, we define a critical value αλc which denotes the maximum value

of α such that if α < αλc the bundle λ is brittle, otherwise it is quasi-brittle. Therefore αc

= max {αλc } taken over all bundles in the sample of the nonlinear FBM is the same αc as

defined in Eq. (4.12).

First we calculate the precise value of critical αλc for a bundle λ using the bisection

method with a tolerance of 10−8. This is done by choosing two initial guess values for

αλlo and αλhi that correspond to the brittle and the quasi-brittle phases, and then halving

the interval between the pair to choose an α value. This process is repeated successively

till the difference [αλhi − αλlo] is less than the tolerance. The relaxation time is then

calculated for some prefixed intervals of ∆α = α − αλc for both positive and negative

values. For ∆α < 0, it is the brittle phase, otherwise it is the quasi-brittle phase. It

is observed from Fig. 4.6(a) that as we approach the critical αc, i.e. ∆α → 0−, the

relaxation time 〈T (α,N)〉 grows rapidly in the brittle regime and then jumps down to a
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very small value when ∆α is just larger than zero,and then it decreases fast as ∆α takes

its positive values. Clearly there is a discontinuity at ∆α = 0. To study it in more detail,

we study the maximal relaxation times just before and after ∆α = 0. They are denoted

by 〈Tmb (α,N)〉 and 〈Tmqb (α,N)〉 that correspond to maximum relaxation times in the

brittle and the quasi-brittle regime. We plot these two quantities for different bundle

sizes N in Fig. 4.6(b). As can be seen from the figure that both are increasing functions

of the bundle size. After trying different functional forms for best fitting, we get that

in the quasi-brittle regime 〈Tmqb (α,N)〉 = Aqbln(BqbN) with constants Aqb = 1.25 and

Bqb = 0.22. On the other hand, in the brittle regime we found a weak power law,

modulated by a logarithmic form: 〈Tmb (α,N)〉 = AbN
γln(BbN) with the exponent

γ = 0.04 and the constants Ab = 3.40 and Bb = 0.11 [Fig. 4.6(b)].

We have observed a similar brittle to quasi-brittle transition for the nonlinear function

G(x) = 1 + xα as well. In this case the quasi-brittle phase occurs for ∆α < 0 and the

brittle phase is observed for ∆α > 0. For the other two nonlinear functions, namely,

G(x) = xα and G(x) = xeαx, no brittle to quasi-brittle transition has been observed.

4.6 Avalanche size distribution

The estimation of avalanche sizes, and in particular study of the distribution of the

avalanche sizes are quite commonly done in the literature to characterize the dynamics

of the FBMs. An avalanche is triggered by the loading of a bundle in a stable state

in a quasistatic manner such that only one fiber is broken which is the weakest fiber

among the set of intact fibers. As a result, this causes a cascade of fiber failures, and the

avalanche size ∆ is defined by the number of broken fibers before the bundle arrives at

the next stable state. Therefore, the entire dynamical evolution of the bundle consists of

a sequence of such avalanches. These avalanches are of widely different sizes, and in

the case of a linear fiber bundle following ELS dynamics, their probability distribution

D(∆) against the avalanche size decays as a power law in the asymptotic limit of large
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Figure 4.7: G(x) = eαx: (a) A finite-size scaling of the avalanche size distribution using
D(∆, N)Nη against ∆.N−ζ for α = 1 and N = 212 (black), 218 (red), and 224 (blue). A
good collapse of data is obtained with η = 1.0 and ζ = 0.66, implying τ = η/ζ ≈ 1.5.
(b) For a specific bundle size N = 220, the avalanche size distribution D(∆, N) has
been plotted against ∆ for α = 1.05 (black), 1.1 (red), 1.2 (blue), 1.4 (green), and 2.0
(magenta) (from top to bottom). As α approaches unity, the crossover avalanche size
gradually diverges.

bundle sizes: D(∆) ∼ ∆−τ , with τ = 5/2 [41, 53].

In the case of our nonlinear FBM, we have estimated that exponent τ ≈ 2.5 in the

strongly quasi-brittle regime α >> αc. However, right at αc, the situation is different,

the exponent τ ≈ 1.5. Thus, there exists a crossover in the avalanche size exponent from

≈ 1.5 to ≈ 2.5 as α is continuously increased from unity. For a specific value of α in

between these two limits, there exists a threshold value ∆c(α) of the avalanche size, such

that for ∆ << ∆c, one gets τ ≈ 1.5 and for ∆ >> ∆c, one gets τ ≈ 2.5. This implies

that even though the width of the distribution of breaking strains is kept unchanged,

there exists a phase transition from brittle to quasi-brittle regime. Fig 4.7(a) shows the

avalanche size distribution at αc = 1 where the exponent is ≈ 1.5. On the other hand,

Fig. 4.7(b) shows the avalanche size distribution for five different values of α > 1 and

for a fixed bundle size N = 220. For each curve, a value of ∆c can be identified as the

crossover avalanche size, such that the slopes of the curve for the ∆ smaller and larger

than ∆c are approximately 1.5 and 2.5 respectively [15].

For the case G(x) = 1 + xα, a similar crossover from τ ≈ 1.5 to τ ≈ 2.5 has been

observed. However, no such crossover has been seen in the other two cases.

71



Chapter 4 4.7. Dependence on the width of the disorder distribution

4.7 Dependence on the width of the disorder

distribution

Next, we studied how the behavior of the nonlinear fiber bundle is affected when the

width of the distribution of the breaking strains of individual fibers is varied. Here,

the breaking strains {xi} were distributed within the range {0, 1}. We now make the

distribution p(x) tunable, and assume that p(x) is again a normalized uniform distribution

within the limits (1
2
− δ) to (1

2
+ δ) where the δ is a continuously tunable parameter that

changes the width of the distribution. Therefore, the normalized probability distribution

is given by p(x) = 1/2δ and the cumulative probability P (x) = (x− 1/2 + δ)/2δ for

(1/2 − δ) ≤ x ≤ (1/2 + δ). Again, using G(x) = eαx and following Eq. (4.3), the

functional form of the external load is found to be

F (x, α, δ) =
Neαx

2δ
(δ +

1

2
− x). (4.19)

In the same way as mentioned before, maximizing F (x) at the critical strain xc yields

xc(α, δ) = δ + 1/2− 1/α. (4.20)

We have discussed before that in a brittle bundle, the weakest fiber failure leads to

complete failure of the bundle. When the value of δ is small then the value of the

minimum breaking strain xm is large and consequently the stress released by that fiber is

also large. This released stress is thus high enough to trigger a devastating avalanche that

breaks the remaining intact fibers in successive load redistribution steps. On the other

hand when δ is a large value then xm is small and so the load released after the breaking

of this fiber is small and the avalanche created by the failure of this weakest fiber quickly

gets arrested. Since a bundle is quasi-brittle, if the number of avalanches required for

the global failure is at least two, therefore, tuning the value of δ > δc the bundle shifts

from the brittle to the quasi-brittle phase. Therefore, in the limit of N →∞, the critical

value of δc can be calculated by equating the critical strain xc to the lowest possible

breaking threshold in the bundle which is the lower limit of the uniform distribution.
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Figure 4.8: G(x) = eαx: (a) Plot of the critical width δc(α) against α using open circles.
The corresponding analytical form in Eq. (4.21) has been shown in black solid line.
The matching is quite good. (b) For α = αc = 1 and for δc = 1/2, the probability of
occurrence of a brittle bundle has been plotted against N−0.333 and a very good straight
line fit has been obtained. On extrapolation, this line passes very close to the origin.

Thus 1/2− δc = xc yields,

δc(α) = 1/2α. (4.21)

Numerically, to find δc(α,N) for a particular α and N , a large sample of independent

fiber bundles are considered and the value of δ is varied in small steps from 0 to 1/2.

The fraction of bundles that are brittle, is denoted by the probability for a brittle bundle

Pb(α,N). The value of δ for which Pb(α,N) = 0 is considered to be the value of

δc(α,N). For each value of α, this calculation is then repeated for four different values

of N = 28, 210, 212, and 214 and the δc(α,N) values are extrapolated to obtain the

asymptotic value of δc(α).

This calculation is repeated for different values of α and δc(α) is plotted against α

in Fig. 4.8(a) along with the analytical form. The numerical result matches well with

the analytical expression given by Eq. (4.21). However, this method did not work for

α = 1, where even for δ = 1/2, the probabilities P (α,N) are found to be non-zero. We

therefore calculated the probability P (α = 1, δ = 1/2, N) for different values of N and

extrapolated them in Fig. 4.8(b) againstN−0.333. The data fits nicely to a straight line and

on extrapolation, the fitted straight line passes through the origin. From this analysis we

conclude δc(α = 1)=0.5. In a similar way, for α < 1, the probability P (δ, α,N) values
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for δ = 1/2 are non-zero, and on extrapolation, the extrapolated value still remains

larger than zero. Since, by definition δ cannot be greater than 1/2, we conclude that

δc(α) = 1/2 for all values of α in the range 0 < α ≤ 1.

These calculations have been repeated for the stress-strain characteristic G(x) = xα.

The corresponding value of δc(α) in this case is given by

F (x, α, δ) =
Nxα

2δ
(δ + 1/2− x), (4.22)

xc(α, δ) = [α(2δ + 1)]/[2(α + 1), (4.23)

δc(α) = 1/[2(2α + 1)]. (4.24)

Similarly, for G(x) = xeαx,

F (x, α, δ) = Nxeαx(δ + 1/2− x)/2δ, (4.25)

xc(α, δ) = (t− 2 +
√
t2 + 4)/2α (4.26)

where t = α(1/2 + δ), (4.27)

δc(α) = (α + 3−
√
α2 + 2α + 9)/4α. (4.28)

Here, the limit of α→ 0 implies G(x) = x and therefore limα→0 δc(α) = 1/6 gives us

the same result obtained in [58].

4.8 Additional examples of brittle to quasi-brittle

transitions

In this section we would consider some more example cases where the brittle to quasi-

brittle transitions take place. These examples have different forms of the characteristic

nonlinear stress (s) - strain (x) functions, different forms of the probability distribution

functions as the input. However, none of them has any discontinuity in the function G(x).

Yet, a transition from a brittle phase to a quasi-brittle phase is observed in each case.
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Figure 4.9: Case I: Probability P (α,N) of finding an arbitrary fiber bundle of size N
in the brittle phase for a specific value of α. The bundle sizes are N = 210 (black), 212

(red), 214 (green), and 216 (blue) and the distribution becomes increasingly sharper with
increasing N at the critical value of αc = 1.

Case I: The form of the nonlinear stress (s) - strain (x) function is:

G(x) =


x, for 0 ≤ x < 1

1 + (x− 1)α, for x ≥ 1,

(4.29)

and the distribution of breaking strains is

P (x) =


0, for 0 ≤ x < 1

x− 1, for 1 ≤ x ≤ 2.

(4.30)

For this case the functional form of the external load is:

F (x) = N


x, for 0 ≤ x ≤ 1

[1 + (x− 1)α][1− (x− 1)] for 1 ≤ x ≤ 2.

(4.31)

To study the transition in this case we plot the variation of the probability P (α,N)

of finding an arbitrary fiber bundle of size N in the brittle phase for a specific value of α

in Fig. 4.9. The distribution is seen to become sharper as the system size increases. That

is, for α < αc = 1, P (α,N) → 0 and for α > αc, P (α,N) assumes non-zero values

which approaches unity for large values of α. Next, we have plotted the variation of

σc(α) against α in Fig. 4.10(a) which exhibits a slow decay on increasing α. Finally in

Fig. 4.10(b), the fraction fb(α,N) of broken fibers before the last avalanche has been
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Figure 4.10: Case I: (a) Numerically obtained values of the asymptotic critical load
σc(α) has been plotted against α. It gradually decreases to a value of σc(α) = 1. (b)
Fraction fb(α,N) of broken fibers before the last avalanche has been plotted against α
for the bundle sizes N = 28 (black), 210 (red), 212 (green), and 214 (blue) and the curves
become increasingly sharper with increasing N at the critical value of αc = 1.

plotted against α. When the nonlinear parameter α is very small, i.e. α→ 0, then the

fraction fb(α,N) gradually tends to vanish as well. This quantity fb(α,N) is also zero

at the transition point given by αc = 1. This implies that fb(α,N) has a maximum in

between 0 < α < 1.

Case II: In this case the stress - strain relation is linear,

G(x) = x, for 0 ≤ x (4.32)

but the distribution of breaking strains is nonlinear and is limited only between 1 ≤ x < 2

and zero otherwise, as:

P (x) =


0, for 0 ≤ x < 1

(x− 1)1/α, for 1 ≤ x ≤ 2.

(4.33)

For this case the functional form of the external load is:

F (x) = N


x, for 0 ≤ x ≤ 1

x[1− (x− 1)1/α] for 1 ≤ x ≤ 2.

(4.34)

Using a change of variable one can write

y =


x, for 0 ≤ x < 1

1 + (x− 1)1/α, for 1 ≤ x.

(4.35)

76



Chapter 4 4.8. Additional examples of brittle to quasi-brittle transitions

which on inversion

x =


y, for 0 ≤ y < 1

1 + (y − 1)α, for 1 ≤ y.

(4.36)

Therefore, the functional form of the external load becomes,

F (y) = F (x) = N


y, for 0 ≤ y < 1

[1 + (y − 1)α][1− (y − 1)],

for 1 ≤ y ≤ 2.

(4.37)

which has the same form as in Eq. (4.31) but in terms of y instead of x. However, in

spite of such a change of variable, the order statistics for the breaking thresholds sλ(1),

sλ(2), ...., sλ(N) discussed in Sec. 2.2 corresponding equations for Eq. (2.3) and Eq. (2.4)

remains unchanged.

Case III:

G(x) = x, for 0 ≤ x (4.38)

P (x) =


0, for 0 ≤ x < 1

1− 1/xα, for 1 ≤ x ≤ ∞.
(4.39)

F (x) = N


x, for 0 ≤ x ≤ 1

x1−α for 1 ≤ x ≤ ∞.
(4.40)

In the case of α = 1,

F (x) = N


x, for 0 ≤ x ≤ 1

1 for 1 ≤ x ≤ ∞.
(4.41)

In both cases of II and III, our numerical simulation results confirm the brittle to

quasi-brittle transition at αc = 1.

Case IV: The distribution of breaking strengths, i.e., either breaking stresses or break-

ing strains of individual fibers play an important role in determining the overall behavior

of the fiber bundle. In Chapter 3 it has been shown that the power law distribution of
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breaking stresses of fibers can also lead to a brittle to quasi-brittle transition where the

exponent ν defined by Eq. (4.2) depends explicitly on the cut-off parameter of that

distribution.

In a similar way, we define following [78] a cumulative probability distribution of

breaking stresses of individual fibers in the following way:

PN(s) =


0, for 0 ≤ s < 1

1− 1/sα, for 1 ≤ s ≤ ∞.
(4.42)

We observe a transition here as well between the brittle and quasi-brittle phases. The

transition is seen to occur at αc = 1. However, this transition is less sharp in this case,

i.e., P (α) increases at a slower rate for α > αc in comparison to cases I and II.

4.9 Summary

To summarize, we have studied some breakdown properties of FBMs with nonlinear

elastic fibers. Here, each fiber is assigned a random breaking threshold of its own. We

have observed the well-known brittle to quasi-brittle phase transition at a critical value

of αc of the parameter α that defines the nonlinearity in the stress-strain characteristic

function G(x). The relaxation time at the transition point is seen to diverge with increas-

ing N as the critical point is approached. At the brittle phase, it diverges with a weak

power law modulated logarithmic function while in the quasi-brittle phase it diverges

with logarithmic functional forms. Using the analytical tools and numerical results, we

have also studied the variation of αc(δ) as a function of the width δ of the distribution

of the breaking strains. In addition, we have considered three more cases, where the

stress-strain relations are linear, but the probability distribution of breaking thresholds is

nonlinear. The brittle to quasi-brittle transition has been observed in these cases as well.
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CHAPTER 5

Brittle to quasi-brittle transition in

a compound fiber bundle

5.1 Introduction

It is well known when two or more different types of materials having different properties

are combined together then the resulting product has properties that are distinct from its

individual components. These compound materials with mixtures of different kinds of

fibers are very important in industrial applications. For example, good quality fabrics

are produced using mixtures of cotton and nylon fibers. This prompts us to study the

properties of a compound FBM when the failure thresholds of the individual fibers

assume a bimodal distribution. In this chapter, we have mainly studied the brittle to

quasi-brittle transitions for the compound fiber bundles. Breaking thresholds of fibers

of these materials are widely different. Keeping this in mind, one therefore likes to ask

what changes in the properties of a fiber bundle take place when the bundle is made of

two different types of fibers with different sets of breaking thresholds. A FBM with

discontinuous distribution of breaking thresholds in a different form had been considered

in the literature to study the breakdown properties [79, 80].

This chapter is arranged in the following way. In Sec. 5.2, we describe the character-

istics of the bimodal distribution and determine the critical threshold of the compound
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Figure 5.1: The bimodal probability density distribution P (b) of the breaking thresholds
b of the fibers plotted against b. The distribution consists of two rectangular blocks
of width d, symmetrically placed around b = 1/2 keeping a gap of 2s between them.
The total probabilities in the first and the second blocks are denoted by p and 1 − p
respectively.

fiber bundle. In Sec. 5.3, we describe the brittle to quasi-brittle transition in this model

of the fiber bundle. Finally, we summarize our work and conclude in Sec. 5.4.

5.2 Bimodal distribution and the breaking

threshold

We consider a fiber bundle having N fibers whose breaking thresholds {bi} are drawn

from a bimodal distribution. This distribution is a combination of two uniform distribu-

tions of width d, symmetrically placed about the midpoint b = 1/2 of the b axis, and are

separated by an amount of 2s as shown in Fig. 5.1. The first and the second blocks are

extended over the regions 1/2− s− d ≤ b ≤ 1/2− s and 1/2 + s ≤ b ≤ 1/2 + s+ d

respectively. The probability that a randomly selected fiber belongs to the first and

the second block are denoted by p and 1− p respectively. The cumulative probability

distribution is the probability that an arbitrarily selected fiber has strength less than b is

given by: 
p(b− 1/2 + s+ d)/d, for block 1

p+ (1− p)(b− 1/2− s)/d, for block 2.
(5.1)
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Figure 5.2: Using the Eq. (5.4), σ0(σ) has been plotted against σ for different parameter
values: (a) For s = 0.1 and d = 0.4 five curves have been plotted for p = 0 (magenta),
0.4 (blue), 0.6 (green), 0.8 (red) and 1 (black) displayed from top to bottom. (b) For s =
0.1 and p = 0.5 four curves have been plotted for d = 0.1 (black), 0.2 (red), 0.3 (green)
and 0.4 (blue) displayed from top to bottom in the first block and left to right in the
second block.

In an arbitrary intermediate stable state the average value of the applied load F (σ) as

a function of the stress σ per intact fiber is given by [12, 19, 71]

F (σ) = Nσ[1− P (σ)]. (5.2)

The scaled external load per fiber σ0(σ) = F (σ)/N is therefore,

σ0(σ) = σ(1− P (σ)). (5.3)

For our compound fiber bundle

σ0(σ) =


[1− p(σ − 1/2 + s+ d)/d]σ for block 1

[(1− p)− (1− p)(σ − 1/2− s)/d]σ for block 2.
(5.4)

This variation of σ0(σ) against σ has been displayed in Fig. 5.2(a) for a specific set

of values of the parameters s = 0.1, d = 0.4 and for five different values of the first block

probability p = 0, 0.4, 0.6, 0.8, and 1. When p = 0, then all the fibers are in the second

block which implies that all the breaking threshold values are confined between 1/2 + s

and 1. Here, the system is always observed to be brittle and this behavior is evident from

the plot in 5.2(a) which shows that σ0(σ) is always a decreasing function of σ. As the
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Figure 5.3: Plot of the critical load σc(N, s, p) against the block width d using N = 218

and s = 0.1. The value of first block probability p has been tuned between 0 and
1 in steps of 0.1 displayed from top to bottom. The dashed line has the equation
σc(N, s, p) = 1/2− s− d.

value of p increases the system becomes quasi-brittle as can be seen from the variations

of σ0(σ). In Fig. 5.2(b) the same variation is plotted for the specific set s = 0.1, p = 0.5

and for four different values of d = 0.1, 0.2, 0.3 and 0.4. Each plot has two regions, one

for the first block and the other for the second block. In both the figures σ0(σ) varied

linearly with σ between the two blocks. Here also, as the value of d is decreased the

system can be seen to change from a brittle phase to a quasi-brittle phase. The critical

load per fiber of the system is always the maximum value of σ0(σ) for all cases.

We first study the critical load per fiber σc for the global failure of the fiber bundle

for different values of the parameters s, d and p. In particular, we consider the case

where the value of the parameter s is fixed at 0.1 and using different values of p, we

vary the value of the block width d [67, 68]. For the estimation of σc numerically we

follow the method of [66] that has been described in details in Sec. 2.2. We first

arrange the breaking thresholds of a particular bundle α in an increasing order such that

bα(1) < bα(2) < bα(3) < ... < bα(N). Then, the critical load per fiber σαc (N) for a particular

bundle N can be calculated from Eq. (2.4).

This critical load is then averaged over a considerably large number of configurations

to get < σαc (N) >= σc(N). We assume that it converges to σc(∞) ≡ σc in the

asymptotic limit according to σc(N) = σc + AN1/ν where A is a constant and 1/ν is a
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finite size correction exponent. For a sufficiently large N the correction term becomes

negligible. In Fig. 5.3 we have plotted eleven different sets of data for different values

of first block probability p tuned between 0 and 1 at equal intervals of 0.1 for N = 218.

Since this is a considerably large number we expect that this behavior would hold for

asymptotically large bundle sizes as well. For small values of p the σc remains constant

in the entire range of variation of d. For example, p = 0 implies all fibers have breaking

thresholds larger than 1/2 + s and the weakest fiber will always have the value 1/2 + s.

Since for all values of d the system is always brittle, when the external load per fiber is

raised to 0.6, the weakest fiber fails and this leads to a cascade of fiber failures resulting

in the break down of the entire fiber bundle. For this reason, the fiber bundle is said

to be brittle for this set of parameter values, independent of the block width d. As p is

increased the σc decreases and for p ≥ 0.3 the values are not constant any more. This

is because as the number of fibers in the first block increases it lowers the critical load

of the system. The same process has also been carried out for s = 0, 0.2, 0.3 and 0.4.

The dashed line has the equation σc(N, s, p) = 1/2− s− d which means that the set of

(s, p, d) for which a σc(N, s, p) falls on that line is a brittle system.

5.3 Brittle to quasi-brittle transition

To describe the brittle to quasi-brittle transition we analyze the following three quantities,

namely: (i) the fraction f(d,N) of fibers broken before the last avalanche, (ii) the

average number 〈M(d,N)〉 of avalanches required for the complete failure of the bundle,

and (iii) the average size 〈∆(d,N)〉 of the avalanches [77]. Variations of these quantities

have been studied against the width parameter d over its entire range. In particular, we

have estimated the critical value dc of the width that demarcates the brittle phase of the

bundle from its quasi-brittle phase.
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5.3.1 Case p = 0

First we consider the case when only the right block exists, i.e., p = 0. This implies that

the breaking thresholds of all the fibers in the bundle are selected from the second block.

In this case, the cumulative distribution P (b) reduces to

P (b) = (b− 1/2− s)/d (5.5)

and Eq. (5.4) becomes

σ0(σ) = σ(1− (σ − 1/2− s)/d). (5.6)

At the breaking point of the bundle, Eq. (5.6) has a maximum at σ = σ0c(d, s) and it

is calculated to be

σ0c(d, s) = d/2 + (1/2 + s)/2. (5.7)

In this situation the value of σ0c(d, s) is equal to the minimum value of the breaking

thresholds of the bundle, i.e., 1/2 + s. Thus,

dc/2 + (1/2 + s)/2 = 1/2 + s (5.8)

which gives dc = 1/2 + s, the critical point. This result implies that for a system with

all the fibers in the second block, the bundle will always be brittle and no transition can

be observed from a brittle to a quasi-brittle phase.

Numerically, we study the fraction f(d,N) of fibers broken before the last avalanche

against the block width d for four different sizes of the fiber bundle [76]. By definition,

f(d,N) is identically zero when the bundle is completely brittle and non-zero when it is

quasi-brittle. Fig. 5.4(a) exhibits the variation of f(d,N) against d. As the bundle size

N increases, the larger portion of the curve coincides with the d axis. Therefore, the

minimal value dc(N) of d where f(d,N) is non-zero increases and approaches the value

of 1/2. This implies that over the entire range of the width parameter d, the bundle is in

the brittle phase.

The variation of the scaled average number 〈M(d,N)〉/N of avalanches required

for the complete failure of the bundle has been plotted against the block width d and is
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Figure 5.4: Plots are shown here for the special case when only the second block exists
i.e., p = 0. The separation parameter s = 0 i.e., the left end of the block is fixed at
b = 1/2 and its right end extends up to 1/2 + d. Four different bundle sizes are used:
N = 28 (black), 210 (red), 212 (green) and 214 (blue) (N increasing from top to bottom).
To characterize the brittle to quasi-brittle transition, three quantities have been plotted
against the block width d. They are: (a) the fraction f(d,N) of fibers broken before
the last avalanche; (b) the fraction of the average number of avalanches 〈M(d,N)〉/N
required for complete breakdown and (c) the average avalanche size 〈∆(d,N)〉 scaled
by the bundle size.

shown in Fig. 5.4(b). This quantity is also seen to be increasingly smaller with increasing

value of the bundle size N indicating the absence of any transition in the system.

The size of an avalanche ∆(d,N) is measured by the number of fibers failed during

the avalanche. Following the method of Kun et. al. [59] we define the average size of

the avalanches, excluding the last avalanche. The average avalanche size 〈∆(d,N)〉 is

defined as the ratio of second moment to the first moment of the avalanche sizes, as

〈∆(d,N)〉 = Σk∆
2
k(d,N)/Σk∆k(d,N) (5.9)

where the summation index k runs over all avalanches except the last avalanche. This
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Figure 5.5: (a) The probability Pb(d,N) that a randomly selected fiber bundle with s = 0
and p = 1 is brittle, has been plotted against the block width d. The bundle sizes used
are: N = 28(black), 210(red), 214(green) and 218(blue) (N increasing from right to left).
(b) As the bundle size N increases, the critical block width dc(N) approaches the value
0.246 as N−0.308.

quantity 〈∆(d,N)〉 has been plotted in Fig. 5.4(c) that has no maximum for any value of

d which proves that for this particular case there is no transition. This result is expected

because the case s = 0 and p = 0 implies that all the fibers are in second block where

the bundle always remains in a brittle phase.

5.3.2 Case p = 1

The case with p = 1 implies that all the fibers in the bundle have their breaking thresholds

drawn from the first block. For this case

σ0c(d, s) = d[1 + (1/2− s− d)/d]/2. (5.10)

On equating σ0c(d, s) to the value of the lowest breaking threshold for this case 1/2−s−d

we get the transition point as

dc = (1/2− s)/2. (5.11)

Thus, when all the fibers in the bundle are in the first block then the value of dc decreases

linearly with increase in s.

In a specific case, the result of dc = 1/4 from Eq. (5.11) for s = 0 and p = 1 has

been verified numerically. The probability Pb(d,N) that a randomly selected sample
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Figure 5.6: (a) Plot of the average avalanche size 〈∆(d,N)〉 against the block width
d. (b) The finite size scaling plot of the data in (a). An excellent collapse of the data
has been observed when 〈∆(d,N)〉N−0.659 has been plotted against [d− dc(N)]N0.333.
The bundle sizes used in both (a) and (b) are: N = 212(black), 214(red), 216(green) and
218(blue) (N increasing from bottom to top in (a)). (c) The critical width dc(N) of the
first block obtained from the widths corresponding to the maximum values of the average
avalanche size 〈∆(d,N)〉 shown in (a). The difference dc(N) − 0.250 vanishes when
plotted against N−0.331. Therefore, dc(∞) = 0.250 is very much consistent with the
analytical value of dc = 1/4 as given in Eq. (5.11).

of the fiber bundle is brittle has been plotted against d in Fig. 5.5(a) for four different

bundle sizes. The critical width dc(N) for a specific bundle size N is defined as the

minimum value of d for which Pb(d,N) vanishes. The estimated values of dc(N) are

assumed to converge to their asymptotic value dc as:

dc(N)− dc = BN−1/ν . (5.12)

To estimate the asymptotic value dc and the exponent ν we have plotted the dc(N) against

N−1/ν in Fig. 5.5(b). The precise value of the exponent is tuned so that we get the best

straight line with minimal fitting error. Our best estimate from this plot are dc = 0.246
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Figure 5.7: Variation of the same quantities plotted in Fig. 5.4(a) and Fig. 5.4(b), i.e.,
f(d,N) and 〈M(d,N)〉/N against the block width d have been displayed for s = 0 and
p = 0.2. The bundle sizes are N = 212 (black), 214 (red) and 216 (blue). These plots
are characteristically different from those in Fig. 5.4. Each indicates the existence of a
transition from the brittle phase to the quasi-brittle phase.

and 1/ν = 0.308.

The critical width dc(N) has also been estimated from the statistics of avalanche

sizes. The average size of the avalanches 〈∆(d,N)〉 given by Eq. (5.9) has been studied

and plotted against d in Fig. 5.6(a) for four different values of the bundle sizes. It is seen

that for every bundle size the curve has a maximum at a certain value of d which we

assume as the second definition of dc(N). A finite size scaling of the data turned out to

be very nice when we plotted 〈∆(d,N)〉N0.659 against [d− dc(N)]N0.333. We use the

dc(N) values estimated from the peak positions and in Fig. 5.6(b) all four curves fall

very closely on one another. In Fig. 5.6(c) we again plot dc(N)− dc against N−1/ν and

tune ν to get the best fitted straight line. Our results are dc = 0.250 and 1/ν = 0.331.

5.3.3 Case 0 < p < 1

We have further observed that for other intermediate values of the first block probability

parameter p, again with the separation parameter s = 0, there exists non-trivial phase

transitions from the brittle to the quasi-brittle phases. For example, in a particular case

of p = 0.2, we have again studied the same quantities, namely the fraction f(d,N) of

fibers broken before the last avalanche, the average number 〈M(d,N)〉 of avalanches

88



Chapter 5 5.3. Brittle to quasi-brittle transition

0.06 0.08 0.10 0.12 0.14

d

0

100

200

300

400

<
∆

(d
,N

)>

-1 -0.5 0 0.5 1

[d - d
c
(N)]N

0.340

0

0.1

0.2

0.3

<
∆

(d
,N

)>
N

-0
.6

5
1

(b)(a)

Figure 5.8: (a) Plot of the variation of the quantity plotted in Fig. 5.4(c), i.e.,
〈∆(d,N)〉/N against the block width d have been displayed for s = 0 and p = 0.2
for N = 212(black), 214(red), and 216(blue) (N increasing from bottom to top)). The
quantity shows a maximum at a certain value of dc which indicates a transition from
a brittle to a quasi-brittle state. (b) Finite size scaling of the average avalanche size
〈∆(d,N)〉N−0.651 against [d− dc(N)]N0.340 using the data in (a) exhibits an excellent
data collapse.

required for the complete failure of the bundle and the average size 〈∆(d,N)〉 of the

avalanches. These quantities have been plotted against the block width d in Figs. 5.7(a),

5.7(b) and 5.8(a) where d has been tuned from 0 to 1/2 at the interval of 0.0001. It is

again observed that 〈∆(d,N)〉 exhibits a maximum at dc(N) and grows with the bundle

size indicating a phase transition. Finally, in Fig. 5.8(b) we have plotted the scaled

variable 〈∆(d,N)〉N0.651 against [d− dc(N)]N0.340 which exhibits a good collapse of

data. The value of dc for large N have been estimated by extrapolating the bundle sizes

against N−0.325 over N = 214, 216 and 218.

Similarly, the calculation for dc(s, p) for s = 0 has been repeated for the other values

of p in the range 0 < p ≤ 1 at the interval of 0.1 and plotted in Fig. 5.9. It may be noted

that the bundle is always brittle for p = 0. On the other hand, for p > 0 the bundle has

the non-vanishing critical width i.e., dc > 0. Moreover, four other sets of data of dc(s, p)

against p for s = 0.1, 0.2, 0.3 and 0.4 have been plotted in the same Fig. 5.9.

From Eq. (5.4), one obtains the maximum value of σ0c(d, s, p) for a quasi-brittle

state for the first block as

σ0c(d, s, p) = d[1 + p(1/2− s− d)/d]/(2p). (5.13)
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Figure 5.9: The extrapolated values of the critical block width dc(s, p) in the asymptotic
limit of large bundle sizes have been plotted using filled circles against the first block
probability p for different values of the separation parameter s = 0 (black), 0.1 (red),
0.2 (green), 0.3 (blue) and 0.4 (magenta) with s increasing from top to bottom. The
continuous curves are the plots of the Eq. (5.14) which match very well with the
numerical data.

When a bundle is in a brittle state, the critical load per fiber σ0c(d, s, p) at the breaking

point of the bundle should be equal to the value of the weakest fiber in it i.e. (1/2−s−d).

Therefore, on solving for d we get

dc(s, p) = p(1/2− s)/(1 + p). (5.14)

Substituting the values of s = 0 and p = 1/2 one gets back the well established result of

the critical width dc = 1/6 [58]. The cases p = 0 and p = 1 gives back the results of the

limiting cases discussed in previous sections. The Eq. (5.14) has been plotted in Fig. 5.9

for s = 0, 0.1, 0.2, 0.3 and 0.4 along with the numerical results.

Next, we studied the average avalanche size 〈∆(d,N)〉 against d. The average

avalanche size for cases when s 6= 0.0 behaves differently depending on the fraction of

fibers p in the first block. This quantity is plotted in Fig. 5.10(a) for s = 0.1 and four

different values of p = 0.4,0.5 and 0.6. For small values of d for s = 0.1 and p = 0.4

the value of 〈∆(d,N)〉 is vanishingly small followed by a discontinuous jump leading

to a plateau. Then it’s value sharply decreases as d is increased further. Similar curves

are observed for p = 0.5 as well. However, no plateau is observed for p = 0.6. On the

other hand for a much smaller value of 〈∆(d,N)〉, a small peak is observed for the same
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Figure 5.10: Plot of the average avalanche size 〈∆(d,N)〉 against the block width d for
different values of (a) p = 0.4, 0.5, 0.6 and (b) p = 0.6, 0.7, 0.8, 0.9 for a bundle of size
N = 218 with s = 0.1. Here, p increases from left to right in both the figures.

plot as shown in Fig. 5.10(b). Such behavior is observed till p = 0.7 after which only the

small peaks remain and the large peaks vanish.

The formation of the plateau region occurs because when d is small, the bundle is

in the brittle regime and all the fibers from the first block break in either one or a very

small number of avalanches. Thus the average avalanche size 〈∆(d,N)〉 excluding the

last avalanche remains constant as the total load released by these broken fibers is not

enough to break even the weakest fiber in the second block. At the edge of the plateau

the number of avalanches increase significantly and thus the value of 〈∆(d,N)〉 is seen

to fall sharply. In this case, we define the critical width dc to be located at the end of the

plateau instead of the beginning. This is because even though more than one avalanche is

required to break all the fibers in the first block, the breakdown is rapid and the number

of such avalanches is very small. Since the number of avalanches is very small in the

plateau region, it is not possible to observe a wide distribution for the avalanche sizes.

Moreover, as discussed in Sec. 3.3, the brittle to quasi-brittle transition is characterized

by a crossover in the exponent value of the power law followed by the avalanche size

distribution. In this case, this crossover has been observed at the end of the plateau

region.

Therefore, the value of the width d at the right edge of the plateau where 〈∆(d,N)〉

sharply decreases is considered to be the critical width dc(N) for the system size N . The

91



Chapter 5 5.4. Summary

numerical values obtained have been plotted in Fig. 5.9. For s = 0.1 and p = 0.6 and

0.7, two significant peaks have been observed. The value of d at which the smaller peak

occurs as shown in Fig. 5.10(b) has been defined as the dc(N) for these cases. This

is because the small peak indicates that a considerable number of avalanches occur of

small sizes as p is large enough and d is not too small. All the values of dc(N) obtained

through the above mentioned method have been observed to match very closely with the

analytical result obtained in Eq. (5.14).

5.4 Summary

To summarize, we have studied the brittle to quasi-brittle transition in a compound FBM

characterized by bimodal distribution of fiber breaking thresholds. We have observed

that the critical load per fiber for the failure of the bundle strongly depends on all the

three parameters, namely, the width d of the blocks, the separation s between the blocks

and the probability p of the first block. We have parameterized such a transition using

three different quantities, namely: (i) the average fraction of fibers broken before the last

avalanche, (ii) the average number of avalanches required for the complete breakdown

of a fiber bundle and (iii) the average avalanche size excluding the last avalanche. In

addition, we could formulate a general expression for the critical width dc(s, p) of the

phase transition analytically and have verified it by the numerical analysis.
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